Skip to content
2000
Volume 25, Issue 1
  • ISSN: 1568-0266
  • E-ISSN: 1873-4294

Abstract

Flavonoids belong to the polyphenol group that naturally exists in fruits, vegetables, tea, and grains. Flavonoids, as secondary metabolites, show indispensable contributions to biological processes and the responses of plants to numerous environmental factors. The bioactivity of flavonoids depends on C6-C3-C6 ring substitution patterns that exhibit bioactive antioxidant, antimicrobial, antifungal, antitumor, and anti-inflammatory properties. The synthesis of flavonoids has been reported by various methodologies. Therefore, the present review systematically summarizes the synthesis of recent heterocyclic flavonoid derivatives facile synthetic approaches since the research in flavonoids is useful for therapeutic and biotechnology fields.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266303704240524080333
2024-06-05
2025-06-27
Loading full text...

Full text loading...

References

  1. PereiraA.M. CidadeH. TiritanM.E. Stereoselective synthesis of flavonoids: A brief overview.Molecules202328142610.3390/molecules2801042636615614
    [Google Scholar]
  2. ZhaoX. DengZ. WeiA. LiB. LuK. Iodine-catalysed regioselective thiolation of flavonoids using sulfonyl hydrazides as sulfenylation reagents.Org. Biomol. Chem.201614307304731210.1039/C6OB01006G27397410
    [Google Scholar]
  3. ShenN. WangT. GanQ. LiuS. WangL. JinB. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity.Food Chem.202238313253110.1016/j.foodchem.2022.13253135413752
    [Google Scholar]
  4. de LimaD.P. dos JúniorS.P.E. de MenezesA.V. de SouzaD.A. de JoséS.V.P.B. da SilvaB.P. de AlmeidaA.Q. de CarvalhoI.M.M. Chemical composition, minerals concentration, total phenolic compounds, flavonoids content and antioxidant capacity in organic and conventional vegetables.Food Res. Int.202417511368410.1016/j.foodres.2023.11368438129028
    [Google Scholar]
  5. HasnatH. ShompaS.A. IslamM.M. AlamS. RichiF.T. EmonN.U. AshrafiS. AhmedN.U. ChowdhuryM.N.R. FatemaN. HossainM.S. GhoshA. AhmedF. Flavonoids: A treasure house of prospective pharmacological potentials.Heliyon2024106e2753310.1016/j.heliyon.2024.e2753338496846
    [Google Scholar]
  6. KotikM. KulikN. ValentováK. Flavonoids as aglycones in retaining glycosidase-catalyzed reactions: Prospects for green chemistry.J. Agric. Food Chem.20237141148901491010.1021/acs.jafc.3c0438937800688
    [Google Scholar]
  7. FarooqS. NgainiZ. Synthesis, molecular docking and antimicrobial activity of α, β‐unsaturated ketone exchange moiety for chalcone and pyrazoline derivatives.ChemistrySelect20205329974997910.1002/slct.202002278
    [Google Scholar]
  8. FarooqS. NgainiZ. One-pot and two-pot methods for chalcone derived pyrimidines synthesis and applications.J. Heterocycl. Chem.20215861209122410.1002/jhet.4226
    [Google Scholar]
  9. FarooqS. NgainiZ. Chalcone derived pyrazole synthesis via one-pot and two-pot strategies.Curr. Org. Chem.202024131491150610.2174/1385272824999200714101420
    [Google Scholar]
  10. FarooqS. NgainiZ. One pot and two pot synthetic strategies and biological applications of epoxy-chalcones.Chemistry Africa20203229130210.1007/s42250‑020‑00128‑5
    [Google Scholar]
  11. FarooqS. NgainiZ. Chalcone derived benzoheterodiazepines for medicinal applications: A Two‐pot and one‐pot synthetic approach.J. Heterocycl. Chem.202158101914192810.1002/jhet.4337
    [Google Scholar]
  12. FarooqS. NgainiZ. Recent synthetic methodologies for chalcone synthesis (2013-2018).Curr. Organocatal.20196318419210.2174/2213337206666190306155140
    [Google Scholar]
  13. PereiraV. FigueiraO. CastilhoP.C. Flavonoids as insecticides in crop protection—A review of current research and future prospects.Plants202413677610.3390/plants1306077638592833
    [Google Scholar]
  14. ThiN.P.-T. VoT. K. PhamT. H. T. NguyenT. T. Van VoG. Natural flavonoids as potential therapeutics in the management of Alzheimer’s disease: A review.3 Biotech20241436810.1007/s13205‑024‑03925‑8
    [Google Scholar]
  15. JungU.J. KimS.R. Beneficial effects of flavonoids against parkinson’s disease.J. Med. Food201821542143210.1089/jmf.2017.407829412767
    [Google Scholar]
  16. NamM.W. ZhaoJ. LeeM.S. JeongJ.H. LeeJ. Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: Application to flavonoid extraction from Flos sophorae.Green Chem.20151731718172710.1039/C4GC01556H
    [Google Scholar]
  17. XinX. ZhangM. LiX. LaiF. ZhaoG. Biocatalytic synthesis of acylated derivatives of troxerutin: Their bioavailability and antioxidant properties in vitro.Microb. Cell Fact.201817113010.1186/s12934‑018‑0976‑x30134913
    [Google Scholar]
  18. ZhengY.Z. DengG. LiangQ. ChenD.F. GuoR. LaiR.C. Antioxidant activity of quercetin and its glucosides from propolis: A theoretical study.Sci. Rep.201771754310.1038/s41598‑017‑08024‑828790397
    [Google Scholar]
  19. ZhangL. MuscatJ.E. ChinchilliV.M. Kris-EthertonP.M. Al-ShaarL. RichieJ.P. Consumption of berries and flavonoids in relation to mortality in NHANES, 1999–2014.J. Nutr.2024154273474310.1016/j.tjnut.2024.01.00238184200
    [Google Scholar]
  20. NaderiM. SalavatihaZ. GogoiU. MohebbiA. An overview of anti-hepatitis B virus flavonoids and their mechanisms of action.Front. Cell. Infect. Microbiol.202414135600310.3389/fcimb.2024.135600338487354
    [Google Scholar]
  21. WengZ. ZengF. WangM. GuoS. TangZ. ItagakiK. LinY. ShenX. CaoY. DuanJ. WangF. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption.J. Adv. Res.20245719721210.1016/j.jare.2023.04.01737137428
    [Google Scholar]
  22. LopesI. CamposC. MedeirosR. CerqueiraF. Antimicrobial activity of dimeric flavonoids.Compounds20244221422910.3390/compounds4020011
    [Google Scholar]
  23. LiK. YaoF. XueQ. FanH. YangL. LiX. SunL. LiuY. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method.Chem. Cent. J.20181218210.1186/s13065‑018‑0445‑y30003449
    [Google Scholar]
  24. JinY.S. Recent advances in natural antifungal flavonoids and their derivatives.Bioorg. Med. Chem. Lett.2019291912658910.1016/j.bmcl.2019.07.04831427220
    [Google Scholar]
  25. PereiraD. GonçalvesC. MartinsB.T. PalmeiraA. VasconcelosV. PintoM. AlmeidaJ.R. da-SilvaC.M. CidadeH. Flavonoid glycosides with a triazole moiety for marine antifouling applications: Synthesis and biological activity evaluation.Mar. Drugs2020191510.3390/md1901000533374188
    [Google Scholar]
  26. BalloutF. HabliZ. MonzerA. RahalO.N. FatfatM. MuhtasibG.H. Anticancer alkaloids: Molecular mechanisms and clinical manifestations.Bioactive Natural Products for the Management of Cancer: from Bench to Bedside SharmaA.K. SingaporeSpringer Singapore201913510.1007/978‑981‑13‑7607‑8_1
    [Google Scholar]
  27. LiuY. LiuJ. TangC. UyangaV.A. XuL. ZhangF. SunJ. ChenY. Flavonoids‑targeted metabolomic analysis following rice yellowing.Food Chem.202443013698410.1016/j.foodchem.2023.13698437557031
    [Google Scholar]
  28. ChengY. ZhaoH. CuiL. HussainH. NadolnikL. ZhangZ. ZhaoY. QinX. LiJ. ParkJ.H. WangD. Ultrasonic-assisted extraction of flavonoids from peanut leave and stem using deep eutectic solvents and its molecular mechanism.Food Chem.202443413749710.1016/j.foodchem.2023.13749737742551
    [Google Scholar]
  29. WangF. LinK. ShenQ. LiuD. XiaoG. MaL. Metabolomic analysis reveals the effect of ultrasonic-microwave pretreatment on flavonoids in tribute Citrus powder.Food Chem.202444813912510.1016/j.foodchem.2024.13912538537547
    [Google Scholar]
  30. AshrafW. RehmanA. HussainA. KarimA. SharifH.R. SiddiquyM. LianfuZ. Optimization of extraction process and estimation of flavonoids from fenugreek using green extracting deep eutectic solvents coupled with ultrasonication.Food Bioprocess Technol.202417488790310.1007/s11947‑023‑03170‑6
    [Google Scholar]
  31. TrushK. HandzušováN. BalangP.P. Changes in isoflavonoid and flavonoid content in soybean leaves affected by UV-B or copper.Agriculture202369314014810.2478/agri‑2023‑0012
    [Google Scholar]
  32. HasanR. SetiawatiT. SukirmanD. NurzamanM. The arbuscular mycorrhizal fungi inoculation affects plant growth and flavonoid content in tomato plant (Lycopersicum esculentum Mill.).J. Appl. Biol. Biotechnol.20241239510110.7324/JABB.2024.163779
    [Google Scholar]
  33. AlfonsoG.J.L. AlonsoC. PovedaA. UbiparipZ. BallesterosA.O. DesmetT. BarberoJ.J. CoderchL. PlouF.J. Strategy for the enzymatic acylation of the apple flavonoid phloretin based on prior α-glucosylation.J. Agric. Food Chem.20247284325433310.1021/acs.jafc.3c0926138350922
    [Google Scholar]
  34. N.Shen T.Wang Q.Gan S.Liu L.Wang B.Jin Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity.Food Chemistry2022Vol. 38313253110.1016/j.foodchem.2022.132531
    [Google Scholar]
  35. a ZhaoC. LiuX. GongQ. CaoJ. ShenW. YinX. GriersonD. ZhangB. XuC. LiX. ChenK. SunC. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus.Plant Biotechnol. J.202119467168810.1111/pbi.1349433089636
    [Google Scholar]
  36. b L.Schnarr O.Olsson S.Ohls J.Webersinn T.Mauch K.Kümmerer Flavonoids as benign substitutes for more harmful synthetic chemicals - effects of flavonoids and their transformation products on algae.Sustainable Chemistry and Pharmacy2024Vol. 3810147310.1016/j.scp.2024.101473
    [Google Scholar]
  37. WicińskiM. GębalskiJ. MazurekE. PodhoreckaM. ŚniegockiM. SzychtaP. SawickaE. MalinowskiB. The influence of polyphenol compounds on human gastrointestinal tract microbiota.Nutrients202012235010.3390/nu1202035032013109
    [Google Scholar]
  38. DiasM.C. PintoD.C.G.A. SilvaA.M.S. Plant flavonoids: Chemical characteristics and biological activity.Molecules20212617537710.3390/molecules2617537734500810
    [Google Scholar]
  39. BernardsM. Baastrup-SpohrL. Phenylpropanoid metabolism induced by wounding and insect herbivory.Induced Plant Resistance to Herbivory SchallerA. SpringerDordrecht200810.1007/978‑1‑4020‑8182‑8_9
    [Google Scholar]
  40. WakiT. MamedaR. NakanoT. YamadaS. TerashitaM. ItoK. TenmaN. LiY. FujinoN. UnoK. YamashitaS. AokiY. DenessioukK. KawaiY. SugawaraS. SaitoK. SakakibaraY.K. MoritaY. HoshinoA. TakahashiS. NakayamaT. A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity.Nat. Commun.202011187010.1038/s41467‑020‑14558‑932054839
    [Google Scholar]
  41. NiuM. FuJ. NiR. XiongR.L. ZhuT.T. LouH.X. ZhangP. LiJ. ChengA.X. Functional and structural investigation of chalcone synthases based on integrated metabolomics and transcriptome analysis on flavonoids and anthocyanins biosynthesis of the Fern Cyclosorus parasiticus. Front. Plant Sci.20211275751610.3389/fpls.2021.75751634777436
    [Google Scholar]
  42. MarínL. del-RíoG.I. YagüeP. MantecaÁ. VillarC.J. LombóF. De novo biosynthesis of apigenin, luteolin, and eriodictyol in the actinomycete Streptomyces albus and production improvement by feeding and spore conditioning.Front. Microbiol.2017892110.3389/fmicb.2017.0092128611737
    [Google Scholar]
  43. SpribilleR. ForkmannG. Chalcone synthesis and hydroxylation of flavonoids in 3?-position with enzyme preparations from flowers of Dianthus caryophyllus L. (carnation).Planta1982155217618210.1007/BF0039254924271672
    [Google Scholar]
  44. SelepeM. Van HeerdenF. Application of the suzuki-miyaura reaction in the synthesis of flavonoids.Molecules20131844739476510.3390/molecules1804473923609624
    [Google Scholar]
  45. SinghM. KaurM. SilakariO. Flavones: An important scaffold for medicinal chemistry.Eur. J. Med. Chem.20148420623910.1016/j.ejmech.2014.07.01325019478
    [Google Scholar]
  46. BadshahS.L. FaisalS. MuhammadA. PoulsonB.G. EmwasA.H. JaremkoM. Antiviral activities of flavonoids.Biomed. Pharmacother.202114011159610.1016/j.biopha.2021.11159634126315
    [Google Scholar]
  47. HuangW.H. ChienP.Y. YangC.H. LeeA.R. Novel synthesis of flavonoids of Scutellaria baicalensis Georgi.Chem. Pharm. Bull.200351333934010.1248/cpb.51.33912612426
    [Google Scholar]
  48. YaoN. SongA. WangX. DixonS. LamK.S. Synthesis of flavonoid analogues as scaffolds for natural product-based combinatorial libraries.J. Comb. Chem.20079466867610.1021/cc070009y17487987
    [Google Scholar]
  49. XiongW. WangX. ShenX. HuC. WangX. WangF. ZhangG. WangC. Synthesis of flavonols via pyrrolidine catalysis: Origins of the selectivity for flavonol versus aurone.J. Org. Chem.20208520131601317610.1021/acs.joc.0c0186932967425
    [Google Scholar]
  50. AuwersK. MüllerK. Umwandlung von benzal‐cumaranonen in flavonole.Ber. Dtsch. Chem. Ges.19084134233424110.1002/cber.190804103137
    [Google Scholar]
  51. AllanJ. RobinsonR. CCXC.—An accessible derivative of chromonol.J. Chem. Soc. Trans.192412502192219510.1039/CT9242502192
    [Google Scholar]
  52. KostaneckiS. RóżyckiA. On a mode of formation of chromone derivatives.Ber. Dtsch. Chem. Ges.190134110210910.1002/cber.19010340119
    [Google Scholar]
  53. ThakorV. KherJ. BhayaniF. AtodariaB. NoolviM. Synthesis and anticancer activity of flavone derivatives against estrogen dependent cancers by rational approach.PharmaTutor Mag.2014223343
    [Google Scholar]
  54. AliS.S. NoordinL. BakarR.A. ZainalabidinS. JubriZ. Wan AhmadW.A.N. Current updates on potential role of flavonoids in hypoxia/reoxygenation cardiac injury model.Cardiovasc. Toxicol.202121860561810.1007/s12012‑021‑09666‑x34114196
    [Google Scholar]
  55. NinfaliP. AntonelliA. MagnaniM. ScarpaE.S. Antiviral properties of flavonoids and delivery strategies.Nutrients2020129253410.3390/nu1209253432825564
    [Google Scholar]
  56. KumarS. PandeyA.K. Chemistry and biological activities of flavonoids: An overview.ScientificWorldJournal2013201311610.1155/2013/16275024470791
    [Google Scholar]
  57. ZhangJ. Mao-maoM. ShaoM. WangM. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review.Phytomedicine202412815553510.1016/j.phymed.2024.15553538537442
    [Google Scholar]
  58. JiY. LiB. QiaoM. LiJ. XuH. ZhangL. ZhangX. Advances on the in vivo and in vitro glycosylations of flavonoids.Appl. Microbiol. Biotechnol.2020104156587660010.1007/s00253‑020‑10667‑z32514754
    [Google Scholar]
  59. LeonteD. UngureanuD. ZahariaV. Flavones and related compounds: Synthesis and biological activity.Molecules20232818652810.3390/molecules2818652837764304
    [Google Scholar]
  60. PancheA. ChandraS. AdD. HarkeS. Alzheimer’s and current therapeutics: A review.Asian J. Pharm. Clin. Res.2015831419
    [Google Scholar]
  61. PancheA.N. DiwanA.D. ChandraS.R. Flavonoids: An overview.J. Nutr. Sci.20165e4710.1017/jns.2016.4128620474
    [Google Scholar]
  62. YaoN. ChenC.Y. WuC.Y. MotonishiK. KungH.J. LamK.S. Novel flavonoids with antiproliferative activities against breast cancer cells.J. Med. Chem.201154134339434910.1021/jm101440r21599001
    [Google Scholar]
  63. TahlanS. KumarS. NarasimhanB. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review.BMC Chem.201913110110.1186/s13065‑019‑0625‑431410412
    [Google Scholar]
  64. LeeY.T. TanY.J. OonC.E. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine.Acta Pharm. Sin. B202313247849710.1016/j.apsb.2022.09.01036873180
    [Google Scholar]
  65. AgrawalN. MishraP. The synthetic and therapeutic expedition of isoxazole and its analogs.Med. Chem. Res.20182751309134410.1007/s00044‑018‑2152‑632214770
    [Google Scholar]
  66. RaoY.J. SowjanyaT. ThirupathiG. MurthyN.Y.S. KotapalliS.S. Synthesis and biological evaluation of novel flavone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents.Mol. Divers.201822480381410.1007/s11030‑018‑9833‑429869169
    [Google Scholar]
  67. SiwachA. VermaP.K. Synthesis and therapeutic potential of imidazole containing compounds.BMC Chem.20211511210.1186/s13065‑020‑00730‑133602331
    [Google Scholar]
  68. SneldersE. CampsS.M.T. KarawajczykA. SchaftenaarG. KemaG.H.J. van der LeeH.A. KlaassenC.H. MelchersW.J.G. VerweijP.E. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One201273e3180110.1371/journal.pone.003180122396740
    [Google Scholar]
  69. SableP.M. PoteyL.C. Synthesis and antiproliferative activity of imidazole and triazole derivatives of flavonoids.Pharm. Chem. J.201852543844310.1007/s11094‑018‑1836‑z
    [Google Scholar]
  70. SaewanN. KoysomboonS. ChantraprommaK. Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC.J. Med. Plants Res.20115610181025
    [Google Scholar]
  71. ForbesA.M. LinH. MeadowsG.G. MeierG.P. Synthesis and anticancer activity of new flavonoid analogs and inconsistencies in assays related to proliferation and viability measurements.Int. J. Oncol.201445283184210.3892/ijo.2014.245224859601
    [Google Scholar]
  72. SumT. SumT. GallowayW. CollinsS. TwiggD. HollfelderF. SpringD. Combinatorial synthesis of structurally diverse triazole-bridged flavonoid dimers and trimers.Molecules2016219123010.3390/molecules2109123027649131
    [Google Scholar]
  73. AliS.H. SayedA.R. Review of the synthesis and biological activity of thiazoles.Synth. Commun.202151567070010.1080/00397911.2020.1854787
    [Google Scholar]
  74. MengF. YanZ. LuY. WangX. Design, synthesis, and antifungal activity of flavonoid derivatives containing thiazole moiety.Chem. Zvesti202377287788510.1007/s11696‑022‑02522‑4
    [Google Scholar]
  75. BasmaN.S. HeadenT.F. ShafferM.S.P. SkipperN.T. HowardC.A. Local structure and polar order in liquid N -Methyl-2-pyrrolidone (NMP).J. Phys. Chem. B2018122388963897110.1021/acs.jpcb.8b0802030139251
    [Google Scholar]
  76. HeinrichM. MahJ. AmirkiaV. Alkaloids used as medicines: Structural phytochemistry meets biodiversity—an update and forward look.Molecules2021267183610.3390/molecules2607183633805869
    [Google Scholar]
  77. IlkeiV. SpaitsA. PrechlA. MüllerJ. KönczölÁ. LévaiS. RiethmüllerE. SzigetváriÁ. BéniZ. DékányM. MartinsA. HunyadiA. AntusS. SzántayC.Jr BaloghG.T. KalausG. BölcskeiH. HazaiL. C8-selective biomimetic transformation of 5,7-dihydroxylated flavonoids by an acid-catalysed phenolic Mannich reaction: Synthesis of flavonoid alkaloids with quercetin and (–)-epicatechin skeletons.Tetrahedron201773111503151010.1016/j.tet.2017.01.068
    [Google Scholar]
  78. La MonacaA. De GiorgioF. SoaviF. TarquiniG. Di CarliM. ProsiniP.P. ArbizzaniC. 1,3‐Dioxolane: A strategy to improve electrode interfaces in lithium ion and lithium‐sulfur batteries.ChemElectroChem2018591272127810.1002/celc.201701348
    [Google Scholar]
  79. LiuW. MikešF. GuoY. KoikeY. OkamotoY. Free‐radical polymerization of dioxolane and dioxane derivatives: Effect of fluorine substituents on the ring opening polymerization.J. Polym. Sci. A Polym. Chem.200442205180518810.1002/pola.20309
    [Google Scholar]
  80. HibbsD.E. Flavonoid ppar agonists.WO Patent 2009026657A12009
    [Google Scholar]
  81. JangirN. PoonamS. DhaddaS. JangidD.K. Recent advances in the synthesis of five‐ and six‐membered heterocycles as bioactive skeleton: A concise overview.ChemistrySelect202276e20210313910.1002/slct.202103139
    [Google Scholar]
  82. ZeydiM.M. KalantarianS.J. KazeminejadZ. Overview on developed synthesis procedures of coumarin heterocycles.J. Indian Chem. Soc.202017123031309410.1007/s13738‑020‑01984‑1
    [Google Scholar]
  83. FrankeK. PorzelA. SchmidtJ. Flavone-coumarin hybrids from Gnidia socotrana. Phytochemistry200261787387810.1016/S0031‑9422(02)00358‑812453582
    [Google Scholar]
  84. PanG. ZhaoL. XiaoN. YangK. MaY. ZhaoX. FanZ. ZhangY. YaoQ. LuK. YuP. Total synthesis of 8-(6″-umbelliferyl)-apigenin and its analogs as anti-diabetic reagents.Eur. J. Med. Chem.201612267468310.1016/j.ejmech.2016.07.01527448923
    [Google Scholar]
  85. DetsiA. KontogiorgisC. LitinaH.D. Coumarin derivatives: An updated patent review (2015-2016).Expert Opin. Ther. Pat.201727111201122610.1080/13543776.2017.136028428756713
    [Google Scholar]
  86. ShamsudinN.F. AhmedQ.U. MahmoodS. Ali ShahS.A. KhatibA. MukhtarS. AlsharifM.A. ParveenH. ZakariaZ.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation.Molecules2022274114910.3390/molecules2704114935208939
    [Google Scholar]
  87. ZhangB. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids.Eur. J. Med. Chem.201916835737210.1016/j.ejmech.2019.02.05530826511
    [Google Scholar]
  88. AbdelshaheedM.M. FawzyI.M. El-SubbaghH.I. YoussefK.M. Piperidine nucleus in the field of drug discovery.Future J. Pharmaceut. Sci.20217118810.1186/s43094‑021‑00335‑y
    [Google Scholar]
  89. QiH. LiY. ZhouZ. CaoY. LiuF. GuanW. ZhangL. LiuX. LiL. SuY. JungeK. DuanX. BellerM. WangA. ZhangT. Synthesis of piperidines and pyridine from furfural over a surface single-atom alloy Ru1CoNP catalyst.Nat. Commun.2023141632910.1038/s41467‑023‑42043‑637816717
    [Google Scholar]
  90. LiuX.H. LiuH.F. ShenX. SongB.A. BhaduryP.S. ZhuH.L. LiuJ.X. QiX.B. Synthesis and molecular docking studies of novel 2-chloro-pyridine derivatives containing flavone moieties as potential antitumor agents.Bioorg. Med. Chem. Lett.201020144163416710.1016/j.bmcl.2010.05.08020538457
    [Google Scholar]
  91. SheelamK. ChidaraS. VinnakotaS. PolothiR. Highly efficient approach to the total synthesis of flavoxate hydrochloride.Chem. Data Collect.20213310069410.1016/j.cdc.2021.100694
    [Google Scholar]
  92. Flavoxate hydrochloride is coupled the preparation method of impurity.CN Patent 107118191A2017
  93. DeS. Kumar S KA. ShahS.K. KaziS. SarkarN. BanerjeeS. DeyS. Pyridine: The scaffolds with significant clinical diversity.RSC Advances20221224153851540610.1039/D2RA01571D35693235
    [Google Scholar]
  94. LingY. HaoZ.-Y. LiangD. ZhangC.-L. LiuY.-F. WangY. The expanding role of pyridine and dihydropyridine scaffolds in drug design.DDDT2021154289433810.2147/DDDT.S329547
    [Google Scholar]
  95. WongI.L.K. ChanK.F. ChanT.H. ChowL.M.C. Flavonoid dimers as novel, potent antileishmanial agents.J. Med. Chem.201255208891890210.1021/jm301172v22989363
    [Google Scholar]
  96. BatistaV.F. PintoD.C.G.A. SilvaA.M.S. Synthesis of quinolines: A green perspective.ACS Sustain. Chem.& Eng.2016484064407810.1021/acssuschemeng.6b01010
    [Google Scholar]
  97. ZwaagstraM.E. ZhangM. TimmermanH. TamuraM. WadaY. Flavone derivative and medicine comprising the same.US Patent 6136848A2000
  98. AraiM.A. SatoM. SawadaK. HosoyaT. IshibashiM. Efficient synthesis of chromone and flavonoid derivatives with diverse heterocyclic units.Chem. Asian J.20083122056206410.1002/asia.20080016618830978
    [Google Scholar]
  99. WangH. ZhangW. ChengY. ZhangX. XueN. WuG. ChenM. FangK. GuoW. ZhouF. CuiH. MaT. WangP. LeiH. Design, synthesis and biological evaluation of ligustrazine-flavonoid derivatives as potential anti-tumor agents.Molecules2018239218710.3390/molecules2309218730200208
    [Google Scholar]
  100. SisaM. BonnetS.L. FerreiraD. Van der WesthuizenJ.H. Photochemistry of Flavonoids.Molecules20101585196524510.3390/molecules1508519620714295
    [Google Scholar]
  101. HatchF.T. LightstoneF.C. ColvinM.E. Quantitative structure activity relationship of flavonoids for inhibition of heterocyclic amine mutagenicity.Environ. Mol. Mutagen.200035427929910.1002/1098‑2280(2000)35:4<279::AID‑EM3>3.0.CO;2‑910861947
    [Google Scholar]
  102. MullerD. FleuryJ.P. A new strategy for the synthesis of biflavonoids via arylboronic acids.Tetrahedron Lett.199132202229223210.1016/S0040‑4039(00)79688‑2
    [Google Scholar]
  103. ZembowerD.E. ZhangH. Total synthesis of robustaflavone, a potential anti-hepatitis B agent.J. Org. Chem.199863259300930510.1021/jo981186b
    [Google Scholar]
  104. ZhengX. MengW.D. QingF.L. Synthesis of gem difluoromethylenated biflavonoid via the Suzuki coupling reaction.Tetrahedron Lett.200445438083808510.1016/j.tetlet.2004.08.180
    [Google Scholar]
  105. JianJ. Total synthesis of the flavonoid natural product houttuynoid A.J Nat Prod201781237137729394065
    [Google Scholar]
  106. ChenS.D. GaoH. ZhuQ.C. WangY.Q. LiT. MuZ.Q. WuH.L. PengT. YaoX.S. Houttuynoids A-E, anti-herpes simplex virus active flavonoids with novel skeletons from Houttuynia cordata.Org. Lett.20121471772177510.1021/ol300017m22414220
    [Google Scholar]
  107. ChenS.D. LiT. GaoH. ZhuQ.C. LuC.J. WuH.L. PengT. YaoX.S. Anti HSV-1 flavonoid derivatives tethered with houttuynin from Houttuynia cordata.Planta Med.201379181742174810.1055/s‑0033‑135105124288290
    [Google Scholar]
  108. MezgebeK. MulugetaE. Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: A review.RSC Advances20221240259322594610.1039/D2RA04934A36199603
    [Google Scholar]
  109. KyeiS.K. AkarantaO. DarkoG. Synthesis, characterization and antimicrobial activity of peanut skin extract-azo-compounds.Sci. Am.20208e0040610.1016/j.sciaf.2020.e00406
    [Google Scholar]
  110. ZnatiM. HorchaniM. LatapieL. JannetB.H. BouajilaJ. New 1,2,3-triazole linked flavonoid conjugates: Microwave-assisted synthesis, cytotoxic activity and molecular docking studies.J. Mol. Struct.2021124613121610.1016/j.molstruc.2021.131216
    [Google Scholar]
  111. Latos-BrozioM. MasekA. Structure‐activity relationships analysis of monomeric and polymeric polyphenols (quercetin, rutin and catechin) obtained by various polymerization methods.Chem. Biodivers.20191612e190042610.1002/cbdv.20190042631657102
    [Google Scholar]
  112. SinghM. SilakariO. Flavone.Key Heterocycle Cores for Designing Multitargeting MoleculesElsevier201813317410.1016/B978‑0‑08‑102083‑8.00004‑2
    [Google Scholar]
  113. WuE. S. KoverA. (73) Assignee: Fisons Corporation, Rochester, N.Y.Patent 4,560,7741985
  114. TengH. DengH. ZhangC. CaoH. HuangQ. ChenL. The role of flavonoids in mitigating food originated heterocyclic aromatic amines that concerns human wellness.Food Sci. Hum. Wellness202312497598510.1016/j.fshw.2022.10.019
    [Google Scholar]
  115. RameshP. JagadeesanR. SekaranS. DhanasekaranA. VimalrajS. Flavonoids: Classification, function, and molecular mechanisms involved in bone remodelling.Front. Endocrinol.20211277963810.3389/fendo.2021.77963834887836
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266303704240524080333
Loading
/content/journals/ctmc/10.2174/0115680266303704240524080333
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Activities; Bioavailability; Disease; Flavone; Flavonoids; Synthesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test