Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Glioblastoma (GBM) is recognized as the most aggressive and lethal form of primary brain tumor, characterized by rapid proliferation and significant resistance to conventional therapies. Recent studies have illuminated the complex role of Neural Stem Cells (NSCs) in both the progression and treatment of GBM. This review examines the specific molecular pathways influenced by NSCs, focusing on critical signaling cascades such as Notch, P13K, and SHH, which are implicated in tumor development and maintenance. Furthermore, we explore the dual role of NSCs in glioblastoma, where they can act as both facilitators of tumorigenesis and potential agents of tumor suppression, depending on the microenvironmental context. Understanding these intricate interactions is essential for developing innovative therapeutic strategies that target NSCs in GBM. This review aims to provide a comprehensive overview of current knowledge and to identify future research directions in this promising field, ultimately contributing to the advancement of personalized treatment approaches for patients with glioblastoma.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X341526250113064851
2025-02-03
2025-05-31
Loading full text...

Full text loading...

References

  1. CouturierC.P. AyyadhuryS. LeP.U. NadafJ. MonlongJ. RivaG. AllacheR. BaigS. YanX. BourgeyM. LeeC. WangY.C.D. YongW.V. GuiotM-C. NajafabadiH. MisicB. AntelJ. BourqueG. RagoussisJ. PetreccaK. Single-cell RNA-seq reveals that glioblastoma recapitulates a normal neurodevelopmental hierarchy.Nat. Commun.2020111340610.1038/s41467‑020‑17186‑5
    [Google Scholar]
  2. OstromQ.T. CioffiG. GittlemanH. PatilN. WaiteK. KruchkoC. SloanB.J.S. CBTRUS Statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016.Neuro-oncol.201921S5v1v10010.1093/neuonc/noz15031675094
    [Google Scholar]
  3. LouisD.N. PerryA. ReifenbergerG. Deimlingv.A. BrangerF.D. CaveneeW.K. OhgakiH. WiestlerO.D. KleihuesP. EllisonD.W. The 2016 world health organization classification of tumors of the central nervous system: A summary.Acta Neuropathol.2016131680382010.1007/s00401‑016‑1545‑127157931
    [Google Scholar]
  4. SánchezS.J.M. LangaM.J. ArráezM.Á. FusterJ. LaínH.A. ReynésG. GonzálezR.V. VicenteE. DenisV.M. GallegoÓ. SEOM clinical guideline of diagnosis and management of low-grade glioma (2017).Clin. Transl. Oncol.201820131510.1007/s12094‑017‑1790‑329124520
    [Google Scholar]
  5. National Guideline Alliance (UK) Brain tumours (Primary) and brain metastases in adults.London, UKNational Institute for Health and Care Excellence2018
    [Google Scholar]
  6. StuppR. BradaM. van den BentM.J. TonnJ.C. PentheroudakisG. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201425S3iii93iii10110.1093/annonc/mdu05024782454
    [Google Scholar]
  7. TaylorO.G. BrzozowskiJ.S. SkeldingK.A. Glioblastoma multiforme: An overview of emerging therapeutic targets.Front. Oncol.2019996310.3389/fonc.2019.0096331616641
    [Google Scholar]
  8. ShahK. Stem cell-based therapies for tumors in the brain: Are we there yet?Neuro-oncol.20161881066107810.1093/neuonc/now09627282399
    [Google Scholar]
  9. LouisD.N. OhgakiH. WiestlerO.D. CaveneeW.K. BurgerP.C. JouvetA. ScheithauerB.W. KleihuesP. The 2007 WHO classification of tumours of the central nervous system.Acta Neuropathol.200711429710910.1007/s00401‑007‑0243‑417618441
    [Google Scholar]
  10. ParkerN.R. KhongP. ParkinsonJ.F. HowellV.M. WheelerH.R. Molecular heterogeneity in glioblastoma: Potential clinical implications.Front. Oncol.201555510.3389/fonc.2015.0005525785247
    [Google Scholar]
  11. BrennanC.W. VerhaakR.G.W. McKennaA. CamposB. NoushmehrH. SalamaS.R. ZhengS. ChakravartyD. SanbornJ.Z. BermanS.H. BeroukhimR. BernardB. WuC.J. GenoveseG. ShmulevichI. SloanB.J. ZouL. VegesnaR. ShuklaS.A. CirielloG. YungW.K. ZhangW. SougnezC. MikkelsenT. AldapeK. BignerD.D. MeirV.E.G. PradosM. SloanA. BlackK.L. EschbacherJ. FinocchiaroG. FriedmanW. AndrewsD.W. GuhaA. IacoccaM. O’NeillB.P. FoltzG. MyersJ. WeisenbergerD.J. PennyR. KucherlapatiR. PerouC.M. HayesD.N. GibbsR. MarraM. MillsG.B. LanderE. SpellmanP. WilsonR. SanderC. WeinsteinJ. MeyersonM. GabrielS. LairdP.W. HausslerD. GetzG. ChinL. BenzC. SloanB.J. BarrettW. OstromQ. WolinskyY. BlackK.L. BoseB. BoulosP.T. BoulosM. BrownJ. CzerinskiC. EppleyM. IacoccaM. KempistaT. KitkoT. KoyfmanY. RabenoB. RastogiP. SugarmanM. SwansonP. YalamanchiiK. OteyI.P. LiuY.S. XiaoY. AumanJ.T. ChenP-C. HadjipanayisA. LeeE. LeeS. ParkP.J. SeidmanJ. YangL. KucherlapatiR. KalkanisS. MikkelsenT. PoissonL.M. RaghunathanA. ScarpaceL. BernardB. BresslerR. EakinA. IypeL. KreisbergR.B. LeinonenK. ReynoldsS. RoviraH. ThorssonV. ShmulevichI. AnnalaM.J. PennyR. PaulauskisJ. CurleyE. HatfieldM. MalleryD. MorrisS. SheltonT. SheltonC. ShermanM. YenaP. CuppiniL. DiMecoF. EoliM. FinocchiaroG. MadernaE. PolloB. SainiM. BaluS. HoadleyK.A. LiL. MillerC.R. ShiY. TopalM.D. WuJ. DunnG. GianniniC. O’NeillB.P. AksoyB.A. AntipinY. BorsuL. BermanS.H. BrennanC.W. CeramiE. ChakravartyD. CirielloG. GaoJ. GrossB. JacobsenA. LadanyiM. LashA. LiangY. RevaB. SanderC. SchultzN. ShenR. SocciN.D. VialeA. FergusonM.L. ChenQ-R. DemchokJ.A. DillonL.A.L. ShawK.R.M. ShethM. TarnuzzerR. WangZ. YangL. DavidsenT. GuyerM.S. OzenbergerB.A. SofiaH.J. BergstenJ. EckmanJ. HarrJ. MyersJ. SmithC. TuckerK. WinemillerC. ZachL.A. LjubimovaJ.Y. EleyG. AyalaB. JensenM.A. KahnA. PihlT.D. PotD.A. WanY. EschbacherJ. FoltzG. HansenN. HothiP. LinB. ShahN. YoonJ. LauC. BerensM. ArdlieK. BeroukhimR. CarterS.L. CherniackA.D. NobleM. ChoJ. CibulskisK. DiCaraD. FrazerS. GabrielS.B. GehlenborgN. GentryJ. HeimanD. KimJ. JingR. LanderE.S. LawrenceM. LinP. MallardW. MeyersonM. OnofrioR.C. SaksenaG. SchumacherS. SougnezC. StojanovP. TabakB. VoetD. ZhangH. ZouL. GetzG. DeesN.N. DingL. FultonL.L. FultonR.S. KanchiK-L. MardisE.R. WilsonR.K. BaylinS.B. AndrewsD.W. HarshyneL. CohenM.L. DevineK. SloanA.E. VandenBergS.R. BergerM.S. PradosM. CarlinD. CraftB. EllrottK. GoldmanM. GoldsteinT. GriffordM. HausslerD. MaS. NgS. SalamaS.R. SanbornJ.Z. StuartJ. SwatloskiT. WaltmanP. ZhuJ. FossR. FrentzenB. FriedmanW. McTiernanR. YachnisA. HayesD.N. PerouC.M. ZhengS. VegesnaR. MaoY. AkbaniR. AldapeK. BoglerO. FullerG.N. LiuW. LiuY. LuY. MillsG. ProtopopovA. RenX. SunY. WuC-J. YungW.K.A. ZhangW. ZhangJ. ChenK. WeinsteinJ.N. ChinL. VerhaakR.G.W. NoushmehrH. WeisenbergerD.J. BootwallaM.S. LaiP.H. TricheT.J.Jr Van Den BergD.J. LairdP.W. GutmannD.H. LehmanN.L. VanMeirE.G. BratD. OlsonJ.J. MastrogianakisG.M. DeviN.S. ZhangZ. BignerD. LippE. McLendonR. The somatic genomic landscape of glioblastoma.Cell2013155246247710.1016/j.cell.2013.09.03424120142
    [Google Scholar]
  12. KroonenJ. NassenJ. BoulangerY.G. ProvenzanoF. CapraroV. BoursV. MartinD. DeprezM. RobeP. RogisterB. Human glioblastoma-initiating cells invade specifically the subventricular zones and olfactory bulbs of mice after striatal injection.Int. J. Cancer2011129357458510.1002/ijc.2570920886597
    [Google Scholar]
  13. GalliR. BindaE. OrfanelliU. CipellettiB. GrittiA. VitisD.S. FioccoR. ForoniC. DimecoF. VescoviA. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma.Cancer Res.200464197011702110.1158/0008‑5472.CAN‑04‑136415466194
    [Google Scholar]
  14. LlagunoA.S. ChenJ. KwonC.H. JacksonE.L. LiY. BurnsD.K. BuyllaA.A. ParadaL.F. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model.Cancer Cell2009151455610.1016/j.ccr.2008.12.00619111880
    [Google Scholar]
  15. LeeJ.H. LeeJ.E. KahngJ.Y. KimS.H. ParkJ.S. YoonS.J. UmJ.Y. KimW.K. LeeJ.K. ParkJ. KimE.H. LeeJ.H. LeeJ.H. ChungW.S. JuY.S. ParkS.H. ChangJ.H. KangS.G. LeeJ.H. Human glioblastoma arises from subventricular zone cells with low-level driver mutations.Nature2018560771724324710.1038/s41586‑018‑0389‑330069053
    [Google Scholar]
  16. KriegsteinA. BuyllaA.A. The glial nature of embryonic and adult neural stem cells.Annu. Rev. Neurosci.200932114918410.1146/annurev.neuro.051508.13560019555289
    [Google Scholar]
  17. NoctorS.C. CerdeñoM.V. IvicL. KriegsteinA.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases.Nat. Neurosci.20047213614410.1038/nn117214703572
    [Google Scholar]
  18. QianX. GoderieS.K. ShenQ. SternJ.H. TempleS. Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells.Development1998125163143315210.1242/dev.125.16.31439671587
    [Google Scholar]
  19. MerkleF.T. TramontinA.D. VerdugoG.J.M. BuyllaA.A. Radial glia give rise to adult neural stem cells in the subventricular zone.Proc. Natl. Acad. Sci.200410150175281753210.1073/pnas.040789310115574494
    [Google Scholar]
  20. GötzM. BardeY-A. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons.Neuron200546336937215882633
    [Google Scholar]
  21. DoetschF. CailléI. LimD.A. VerdugoG.J.M. BuyllaA.A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain.Cell199997670371610.1016/S0092‑8674(00)80783‑710380923
    [Google Scholar]
  22. GageF.H. TempleS. Neural stem cells: Generating and regenerating the brain.Neuron201380358860110.1016/j.neuron.2013.10.03724183012
    [Google Scholar]
  23. GeW.P. MiyawakiA. GageF.H. JanY.N. JanL.Y. Local generation of glia is a major astrocyte source in postnatal cortex.Nature2012484739437638010.1038/nature1095922456708
    [Google Scholar]
  24. ImamotoK. LeblondC.P. Radioautographic investigation of gliogenesis in the corpus callosum of young rats II. Origin of microglial cells.J. Comp. Neurol.1978180113916310.1002/cne.901800109649786
    [Google Scholar]
  25. BardehleS. KrügerM. BuggenthinF. SchwauschJ. NinkovicJ. CleversH. SnippertH.J. TheisF.J. LuehmannM.M. BechmannI. DimouL. GötzM. Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation.Nat. Neurosci.201316558058610.1038/nn.337123542688
    [Google Scholar]
  26. KiaieN. GorabiA.M. LovelessR. TengY. JamialahmadiT. SahebkarA. The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries.Neurosci. Biobehav. Rev.202214010479410.1016/j.neubiorev.2022.10479435902044
    [Google Scholar]
  27. LorasA. BonetG.L. ArroyoG.J. CadenasM.C. TorrejonM.M. Neural stem cells as potential glioblastoma cells of origin.Life202313490510.3390/life1304090537109434
    [Google Scholar]
  28. RodriguezS.M.B. StaicuG.A. SevastreA.S. BaloiC. CiubotaruV. DricuA. TataranuL.G. Glioblastoma stem cells—useful tools in the battle against cancer.Int. J. Mol. Sci.2022239460210.3390/ijms2309460235562993
    [Google Scholar]
  29. YangX. KleinR. TianX. ChengH.T. KopanR. ShenJ. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway.Dev. Biol.20042691819410.1016/j.ydbio.2004.01.01415081359
    [Google Scholar]
  30. HoriK. SenA. TsakonasA.S. Notch signaling at a glance.J. Cell Sci.2013126Pt 102135214023729744
    [Google Scholar]
  31. LeBonL. LeeT.V. SprinzakD. NejadJ.H. ElowitzM.B. Fringe proteins modulate Notch-ligand cis and trans interactions to specify signaling states.eLife20143e0295010.7554/eLife.0295025255098
    [Google Scholar]
  32. KopanR. IlaganM.X.G. The canonical Notch signaling pathway: Unfolding the activation mechanism.Cell2009137221623310.1016/j.cell.2009.03.04519379690
    [Google Scholar]
  33. HindyE.N. KeyvaniK. PagenstecherA. DammannP. SandalciogluI.E. SureU. ZhuY. Implications of Dll4-Notch signaling activation in primary glioblastoma multiforme.Neuro-oncol.201315101366137810.1093/neuonc/not07123787764
    [Google Scholar]
  34. HullemanE. QuartoM. VernellR. MasserdottiG. ColliE. KrosJ.M. LeviD. GaetaniP. TuniciP. FinocchiaroG. BaenaR.R. CapraM. HelinK. A role for the transcription factor HEY1 in glioblastoma.J. Cell. Mol. Med.200913113614610.1111/j.1582‑4934.2008.00307.x18363832
    [Google Scholar]
  35. XingZ. SunL. GuoW. Elevated expression of Notch-1 and EGFR induced apoptosis in glioblastoma multiforme patients.Clin. Neurol. Neurosurg.2015131545810.1016/j.clineuro.2015.01.01825704190
    [Google Scholar]
  36. Dell’AlbaniP. RodolicoM. PellitteriR. TricarichiE. TorrisiS.A. D’AntoniS. ZappiaM. AlbaneseV. CaltabianoR. PlataniaN. AronicaE. CataniaM.V. Differential patterns of NOTCH1-4 receptor expression are markers of glioma cell differentiation.Neuro-oncol.201416220421610.1093/neuonc/not16824305720
    [Google Scholar]
  37. ChengW. ZhangC. RenX. JiangY. HanS. LiuY. CaiJ. LiM. WangK. LiuY. HuH. LiQ. YangP. BaoZ. WuA. Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma.J. Neurosurg.2017126124925910.3171/2015.11.JNS1543226967788
    [Google Scholar]
  38. VerhaakR.G.W. HoadleyK.A. PurdomE. WangV. QiY. WilkersonM.D. MillerC.R. DingL. GolubT. MesirovJ.P. AlexeG. LawrenceM. O’KellyM. TamayoP. WeirB.A. GabrielS. WincklerW. GuptaS. JakkulaL. FeilerH.S. HodgsonJ.G. JamesC.D. SarkariaJ.N. BrennanC. KahnA. SpellmanP.T. WilsonR.K. SpeedT.P. GrayJ.W. MeyersonM. GetzG. PerouC.M. HayesD.N. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1.Cancer Cell20101719811010.1016/j.ccr.2009.12.02020129251
    [Google Scholar]
  39. CooperL.A.D. GutmanD.A. LongQ. JohnsonB.A. CholletiS.R. KurcT. SaltzJ.H. BratD.J. MorenoC.S. The proneural molecular signature is enriched in oligodendrogliomas and predicts improved survival among diffuse gliomas.PLoS One201059e1254810.1371/journal.pone.001254820838435
    [Google Scholar]
  40. OhgakiH. KleihuesP. The definition of primary and secondary glioblastoma.Clin. Cancer Res.201319476477210.1158/1078‑0432.CCR‑12‑300223209033
    [Google Scholar]
  41. SpinoM. KurzS.C. ChiribogaL. SerranoJ. ZeckB. SenN. PatelS. ShenG. VasudevarajaV. TsirigosA. Cell surface notch ligand DLL3 is a therapeutic target in isocitrate dehydrogenase-mutant glioma.Clin. Cancer Res.20192541261127130397180
    [Google Scholar]
  42. HanN. HuG. ShiL. LongG. YangL. XiQ. GuoQ. WangJ. DongZ. ZhangM. Notch1 ablation radiosensitizes glioblastoma cells.Oncotarget2017850880598806810.18632/oncotarget.2140929152141
    [Google Scholar]
  43. (a HonoratoJR DavisHRA SaggioroEM Role of Sonic hedgehog signaling in cell cycle, oxidative stress, and autophagy of temozolomide resistant glioblastoma.J Cell Physiol20202354379881410.1002/jcp.2927431613002
    [Google Scholar]
  44. (b DaliR. VerginelliF. PramatarovaA. SladekR. Stifaniv. Characterization of a FOXG1:TLE1 transcriptional network in glioblastoma-initiating cells.Mol Oncol.201812677578710.1002/1878‑0261.12168
    [Google Scholar]
  45. MelamedJ.R. MorganJ.T. IoeleS.A. GleghornJ.P. MourtadaS.J. DayE.S. Investigating the role of Hedgehog/GLI1 signaling in glioblastoma cell response to temozolomide.Oncotarget2018943270002701510.18632/oncotarget.2546729930746
    [Google Scholar]
  46. SkodaA.M. SimovicD. KarinV. KardumV. VranicS. SermanL. The role of the Hedgehog signaling pathway in cancer: A comprehensive review.Bosn. J. Basic Med. Sci.201818182010.17305/bjbms.2018.275629274272
    [Google Scholar]
  47. LiuS. DontuG. MantleI.D. PatelS. AhnN. JacksonK.W. SuriP. WichaM.S. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells.Cancer Res.200666126063607110.1158/0008‑5472.CAN‑06‑005416778178
    [Google Scholar]
  48. OnishiH. KatanoM. Hedgehog signaling pathway as a therapeutic target in various types of cancer.Cancer Sci.2011102101756176010.1111/j.1349‑7006.2011.02010.x21679342
    [Google Scholar]
  49. XuQ. YuanX. LiuG. BlackK.L. YuJ.S. Hedgehog signaling regulates brain tumor-initiating cell proliferation and portends shorter survival for patients with PTEN-coexpressing glioblastomas.Stem Cells200826123018302610.1634/stemcells.2008‑045918787206
    [Google Scholar]
  50. HungH.C. LiuC.C. ChuangJ.Y. SuC.L. GeanP.W. Inhibition of sonic hedgehog signaling suppresses glioma stem-like cells likely through inducing autophagic cell death.Front. Oncol.202010123310.3389/fonc.2020.0123332793494
    [Google Scholar]
  51. FerruzziP. MennilloF. RosaD.A. GiordanoC. RossiM. BenedettiG. MagriniR. MohrG.P. MiragliottaV. MagnoniL. MoriE. ThomasR. TuniciP. BakkerA. In vitro and in vivo characterization of a novel hedgehog signaling antagonist in human glioblastoma cell lines.Int. J. Cancer20121312E33E4410.1002/ijc.2734922072503
    [Google Scholar]
  52. NantaR. ShrivastavaA. SharmaJ. ShankarS. SrivastavaR.K. Inhibition of sonic hedgehog and PI3K/Akt/mTOR pathways cooperate in suppressing survival, self-renewal and tumorigenic potential of glioblastoma-initiating cells.Mol. Cell. Biochem.20194541-2112310.1007/s11010‑018‑3448‑z30251117
    [Google Scholar]
  53. MatsuiW.H. Cancer stem cell signaling pathways.Medicine201695S1S8S1910.1097/MD.000000000000476527611937
    [Google Scholar]
  54. ChakravartiA. ZhaiG. SuzukiY. SarkeshS. BlackP.M. MuzikanskyA. LoefflerJ.S. The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas.J. Clin. Oncol.200422101926193310.1200/JCO.2004.07.19315143086
    [Google Scholar]
  55. ThorpeL.M. YuzugulluH. ZhaoJ.J. PI3K in cancer: Divergent roles of isoforms, modes of activation and therapeutic targeting.Nat. Rev. Cancer201515172410.1038/nrc386025533673
    [Google Scholar]
  56. GavganiM.F. ArnesenS.V. JacobsenR.G. KrakstadC. HoivikE.A. LewisA.E. ClassI. Class I phosphoinositide 3-kinase PIK3CA/p110α and PIK3CB/p110β isoforms in endometrial cancer.Int. J. Mol. Sci.20181912393110.3390/ijms1912393130544563
    [Google Scholar]
  57. HollandE.C. CelestinoJ. DaiC. SchaeferL. SawayaR.E. FullerG.N. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice.Nat. Genet.2000251555710.1038/7559610802656
    [Google Scholar]
  58. HambardzumyanD. BecherO.J. RosenblumM.K. PandolfiP.P. TodorovaM.K. HollandE.C. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo.Genes Dev.200822443644810.1101/gad.162700818281460
    [Google Scholar]
  59. WeiY. JiangY. ZouF. LiuY. WangS. XuN. XuW. CuiC. XingY. LiuY. CaoB. LiuC. WuG. AoH. ZhangX. JiangJ. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells.Proc. Natl. Acad. Sci.2013110176829683410.1073/pnas.121700211023569237
    [Google Scholar]
  60. PhillipsH.S. KharbandaS. ChenR. ForrestW.F. SorianoR.H. WuT.D. MisraA. NigroJ.M. ColmanH. SoroceanuL. WilliamsP.M. ModrusanZ. FeuersteinB.G. AldapeK. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis.Cancer Cell20069315717310.1016/j.ccr.2006.02.01916530701
    [Google Scholar]
  61. AkhurstR.J. HataA. Targeting the TGFβ signalling pathway in disease.Nat. Rev. Drug Discov.2012111079081110.1038/nrd381023000686
    [Google Scholar]
  62. IhleN.T. LemosR.Jr WipfP. YacoubA. MitchellC. SiwakD. MillsG.B. DentP. KirkpatrickD.L. PowisG. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance.Cancer Res.200969114315010.1158/0008‑5472.CAN‑07‑665619117997
    [Google Scholar]
  63. YangL. MosesH.L. Transforming growth factor β: Tumor suppressor or promoter? Are host immune cells the answer?Cancer Res.200868229107911110.1158/0008‑5472.CAN‑08‑255619010878
    [Google Scholar]
  64. BellomoC. CajaL. MoustakasA. Transforming growth factor β as regulator of cancer stemness and metastasis.Br. J. Cancer2016115776176910.1038/bjc.2016.25527537386
    [Google Scholar]
  65. DijkeP. HillC.S. New insights into TGF-β–Smad signalling.Trends Biochem. Sci.200429526527310.1016/j.tibs.2004.03.00815130563
    [Google Scholar]
  66. PeñuelasS. AnidoJ. SánchezP.R.M. FolchG. BarbaI. CuartasI. DoradoG.D. PocaM.A. SahuquilloJ. BaselgaJ. SeoaneJ. TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma.Cancer Cell200915431532710.1016/j.ccr.2009.02.01119345330
    [Google Scholar]
  67. IwadateY. MatsutaniT. HironoS. ShinozakiN. SaekiN. Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma.J. Neurooncol.2016129110110710.1007/s11060‑016‑2145‑627193555
    [Google Scholar]
  68. ChaoM. LiuN. SunZ. JiangY. JiangT. XvM. JiaL. TuY. WangL. TGF-β signaling promotes glioma progression through stabilizing Sox9.Front. Immunol.20211159208010.3389/fimmu.2020.59208033613515
    [Google Scholar]
  69. BrunaA. DarkenR.S. RojoF. OcañaA. PeñuelasS. AriasA. ParisR. TortosaA. MoraJ. BaselgaJ. SeoaneJ. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene.Cancer Cell200711214716010.1016/j.ccr.2006.11.02317292826
    [Google Scholar]
  70. IkushimaH. TodoT. InoY. TakahashiM. MiyazawaK. MiyazonoK. Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors.Cell Stem Cell20095550451410.1016/j.stem.2009.08.01819896441
    [Google Scholar]
  71. ScaddenDT The stem-cell niche as an entity of action.Nature200644170971075107910.1038/nature04957
    [Google Scholar]
  72. GilbertsonR.J. RichJ.N. Making a tumour’s bed: Glioblastoma stem cells and the vascular niche.Nat. Rev. Cancer200771073373610.1038/nrc224617882276
    [Google Scholar]
  73. MartinezP. BallarinL. EreskovskyA.V. GazaveE. HobmayerB. ManniL. RottingerE. SprecherS.G. TiozzoS. CoelhoV.A. RinkevichB. Articulating the “stem cell niche” paradigm through the lens of non-model aquatic invertebrates.BMC Biol.20222012310.1186/s12915‑022‑01230‑535057814
    [Google Scholar]
  74. LlorenteV. VelardeP. DescoM. GaviroG.M.V. Current understanding of the neural stem cell niches.Cells20221119300210.3390/cells1119300236230964
    [Google Scholar]
  75. FidoamoreA. CristianoL. AntonosanteA. d’AngeloM. GiacomoD.E. AstaritaC. GiordanoA. IppolitiR. BenedettiE. CiminiA. Glioblastoma stem cells microenvironment: The paracrine roles of the niche in drug and radioresistance.Stem Cells Int.201620161680910510.1155/2016/680910526880981
    [Google Scholar]
  76. CastillejoR.C. SánchezS.F. AgullóA.C. FerrónS.R. AguilarA.J.D. SánchezP. MiraH. EscribanoJ. FariñasI. Pigment epithelium–derived factor is a niche signal for neural stem cell renewal.Nat. Neurosci.20069333133910.1038/nn165716491078
    [Google Scholar]
  77. TavazoieM. VekenV.D.L. VargasS.V. LouissaintM. ColonnaL. ZaidiB. VerdugoG.J.M. DoetschF. A specialized vascular niche for adult neural stem cells.Cell Stem Cell20083327928810.1016/j.stem.2008.07.02518786415
    [Google Scholar]
  78. DoetschF. A niche for adult neural stem cells.Curr. Opin. Genet. Dev.200313554355010.1016/j.gde.2003.08.01214550422
    [Google Scholar]
  79. FanX. KhakiL. ZhuT.S. SoulesM.E. TalsmaC.E. GulN. KohC. ZhangJ. LiY.M. MaciaczykJ. NikkhahG. DiMecoF. PiccirilloS. VescoviA.L. EberhartC.G. NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts.Stem Cells201028151610.1002/stem.25419904829
    [Google Scholar]
  80. GonzalezP.P AsricanB RodriguezE KuoCT Identification of distinct ChAT+ neurons and activity-dependent control of postnatal SVZ neurogenesis.Nat Neurosci.2014177934942
    [Google Scholar]
  81. LlagunoA.S.R. WangZ. SunD. ChenJ. XuJ. KimE. HatanpaaK.J. RaisanenJ.M. BurnsD.K. JohnsonJ.E. ParadaL.F. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes.Cancer Cell201528442944010.1016/j.ccell.2015.09.00726461091
    [Google Scholar]
  82. RoeslerR. Interplay between neural stem cells and glioblastoma: Possible role of neurotrophin signaling.Clin. Transl. Oncol.201921111578157910.1007/s12094‑019‑02206‑831571153
    [Google Scholar]
  83. JiangY. MarinescuV.D. XieY. JarviusM. MaturiN.P. HaglundC. OlofssonS. LindbergN. OlofssonT. LeijonmarckC. HesselagerG. AlafuzoffI. FryknäsM. LarssonR. NelanderS. UhrbomL. Glioblastoma cell malignancy and drug sensitivity are affected by the cell of origin.Cell Rep.201718497799010.1016/j.celrep.2017.01.00328122246
    [Google Scholar]
  84. LlagunoA.S.R. ParadaL.F. Cell of origin of glioma: Biological and clinical implications.Br. J. Cancer2016115121445145010.1038/bjc.2016.35427832665
    [Google Scholar]
  85. MatarredonaE.R. PastorA.M. Neural stem cells of the subventricular zone as the origin of human glioblastoma stem cells. Therapeutic implications.Front. Oncol.2019977910.3389/fonc.2019.0077931482066
    [Google Scholar]
  86. LiuC. SageJ.C. MillerM.R. VerhaakR.G.W. HippenmeyerS. VogelH. ForemanO. BronsonR.T. NishiyamaA. LuoL. ZongH. Mosaic analysis with double markers reveals tumor cell of origin in glioma.Cell2011146220922110.1016/j.cell.2011.06.01421737130
    [Google Scholar]
  87. LeeJH LeeJH. The origin-of-cell harboring cancer-driving mutations in human glioblastoma.BMB Rep20185110481310.5483/BMBRep.2018.51.10.23330269745
    [Google Scholar]
  88. ModrekA.S. GolubD. KhanT. BreadyD. PradoJ. BowmanC. DengJ. ZhangG. RochaP.P. RaviramR. LazarisC. StaffordJ.M. LeRoyG. KaderM. DhaliwalJ. BayinN.S. FrensterJ.D. SerranoJ. ChiribogaL. BaitalmalR. NanjangudG. ChiA.S. GolfinosJ.G. WangJ. KarajannisM.A. BonneauR.A. ReinbergD. TsirigosA. ZagzagD. SnuderlM. SkokJ.A. NeubertT.A. PlacantonakisD.G. Low-grade astrocytoma mutations in IDH1, P53, and ATRX cooperate to block differentiation of human neural stem cells via repression of SOX2.Cell Rep.20172151267128010.1016/j.celrep.2017.10.00929091765
    [Google Scholar]
  89. VerdugoE. PuertoI. MedinaM.Á. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment.Cancer Commun.202242111083111110.1002/cac2.1236136129048
    [Google Scholar]
  90. BulstrodeH. JohnstoneE. TorrejonM.M.A. FergusonK.M. BressanR.B. BlinC. GrantV. GogolokS. GangosoE. GagricaS. EnderC. FotakiV. SproulD. BertoneP. PollardS.M. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators.Genes Dev.201731875777310.1101/gad.293027.11628465359
    [Google Scholar]
  91. YangR. ChenL.H. HansenL.J. CarpenterA.B. MoureC.J. LiuH. PirozziC.J. DiplasB.H. WaitkusM.S. GreerP.K. ZhuH. McLendonR.E. BignerD.D. HeY. YanH. Cic loss promotes gliomagenesis via aberrant neural stem cell proliferation and differentiation.Cancer Res.201777226097610810.1158/0008‑5472.CAN‑17‑101828939681
    [Google Scholar]
  92. YanW. WuX. ZhouW. FongM.Y. CaoM. LiuJ. LiuX. ChenC.H. FadareO. PizzoD.P. WuJ. LiuL. LiuX. ChinA.R. RenX. ChenY. LocasaleJ.W. WangS.E. Cancer-cell-secreted exosomal miR-105 promotes tumour growth through the MYC-dependent metabolic reprogramming of stromal cells.Nat. Cell Biol.201820559760910.1038/s41556‑018‑0083‑629662176
    [Google Scholar]
  93. WangJ. LiuJ. SunG. MengH. WangJ. GuanY. YinY. ZhaoZ. DongX. YinS. LiH. ChengY. WuH. WuA. YuX. ChenL. Glioblastoma extracellular vesicles induce the tumour-promoting transformation of neural stem cells.Cancer Lett.201946611210.1016/j.canlet.2019.09.00431521694
    [Google Scholar]
  94. (a QinEY CooperDD AbbottKL Neural Precursor-Derived Pleiotrophin Mediates Subventricular Zone Invasion by Glioma.Cell.20171705845-859.e1910.1016/j.cell.2017.07.016
    [Google Scholar]
  95. (b ZhangGL WangCF QianC JiYX WangYZ Role and mechanism of neural stem cells of the subventricular zone in glioblastoma.World J Stem Cells202113787789310.4252/wjsc.v13.i7.87734367482
    [Google Scholar]
  96. StuppR. MasonW.P. van den BentM.J. WellerM. FisherB. TaphoornM.J.B. BelangerK. BrandesA.A. MarosiC. BogdahnU. CurschmannJ. JanzerR.C. LudwinS.K. GorliaT. AllgeierA. LacombeD. CairncrossJ.G. EisenhauerE. MirimanoffR.O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.N. Engl. J. Med.20053521098799610.1056/NEJMoa04333015758009
    [Google Scholar]
  97. ThakkarJ.P. DolecekT.A. HorbinskiC. OstromQ.T. LightnerD.D. SloanB.J.S. VillanoJ.L. Epidemiologic and molecular prognostic review of glioblastoma.Canc. Epidemiol. Biomarkers Prev.201423101985199610.1158/1055‑9965.EPI‑14‑027525053711
    [Google Scholar]
  98. GhoshD. NandiS. BhattacharjeeS. Combination therapy to checkmate Glioblastoma: Clinical challenges and advances.Clin. Transl. Med.201871e3310.1186/s40169‑018‑0211‑830327965
    [Google Scholar]
  99. BindraR.S. ChalmersA.J. EvansS. DewhirstM. GBM radiosensitizers: Dead in the water…or just the beginning?J. Neurooncol.2017134351352110.1007/s11060‑017‑2427‑728762004
    [Google Scholar]
  100. CurtisM.A. KamM. NannmarkU. AndersonM.F. AxellM.Z. WikkelsoC. HoltåsS. van Roon-MomW.M.C. ErikssonB.T. NordborgC. FrisénJ. DragunowM. FaullR.L.M. ErikssonP.S. Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension.Science200731558161243124910.1126/science.113628117303719
    [Google Scholar]
  101. MutukulaN. ElkabetzY. “Neural Killer” cells: Autologous cytotoxic neural stem cells for fighting glioma.Cell Stem Cell201720442642810.1016/j.stem.2017.03.01928388425
    [Google Scholar]
  102. CameronB.D. TraverG. RolandJ.T. BrockmanA.A. DeanD. JohnsonL. BoydK. IhrieR.A. FreemanM.L. Bcl2-expressing quiescent type B neural stem cells in the ventricular–subventricular zone are resistant to concurrent temozolomide/X-irradiation.Stem Cells201937121629163910.1002/stem.308131430423
    [Google Scholar]
  103. MuraccioleX. amineE.W. TabouretE. BoucekineM. BarlierA. PetrirenaG. HarivonyT. SolignacL. ChinotO.L. MacagnoN. BrangerF.D. PadovaniL. Negative survival impact of high radiation doses to neural stem cells niches in an IDH-wild-type glioblastoma population.Front. Oncol.2018842610.3389/fonc.2018.0042630338243
    [Google Scholar]
  104. ChoN. WangC. RaymondC. KaprealianT. JiM. SalamonN. PopeW.B. NghiemphuP.L. LaiA. CloughesyT.F. EllingsonB.M. Diffusion MRI changes in the anterior subventricular zone following chemoradiation in glioblastoma with posterior ventricular involvement.J. Neurooncol.2020147364365210.1007/s11060‑020‑03460‑532239430
    [Google Scholar]
  105. BagóJ.R. OkolieO. DumitruR. EwendM.G. ParkerJ.S. WerffR.V. UnderhillT.M. SchmidR.S. MillerC.R. HingtgenS.D. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy.Sci. Transl. Med.20179375eaah651010.1126/scitranslmed.aah651028148846
    [Google Scholar]
  106. SpencerD. YuD. MorshedR.A. LiG. PituchK.C. GaoD.X. BertolinoN. ProcissiD. LesniakM.S. BalyasnikovaI.V. Pharmacologic modulation of nasal epithelium augments neural stem cell targeting of glioblastoma.Theranostics2019972071208310.7150/thno.2958131037157
    [Google Scholar]
  107. SheetsK.T. EwendM.G. AsliM.M. TuinS.A. LoboaE.G. AboodyK.S. HingtgenS.D. Developing implantable scaffolds to enhance neural stem cell therapy for post-operative glioblastoma.Mol. Ther.20202841056106710.1016/j.ymthe.2020.02.00832109370
    [Google Scholar]
  108. GoffartN. KroonenJ. ValentinD.E. DedobbeleerM. DenneA. MartiniveP. RogisterB. Adult mouse subventricular zones stimulate glioblastoma stem cells specific invasion through CXCL12/CXCR4 signaling.Neuro-oncol.2015171819410.1093/neuonc/nou14425085362
    [Google Scholar]
  109. GravinaG.L. ManciniA. ColapietroA. VitaleF. VetuschiA. PompiliS. RossiG. MaramponF. RichardsonP.J. PatientL. PatientL. BurbidgeS. FestucciaC. The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models.Tumour Biol.2017396101042831769552810.1177/101042831769552828639900
    [Google Scholar]
  110. ChenL. CazaresG.H. YeX. FordE. McNuttT. KleinbergL. LimM. ChaichanaK. HinojosaQ.A. RedmondK. Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection.Int. J. Radiat. Oncol. Biol. Phys.201386461662210.1016/j.ijrobp.2013.02.01423540348
    [Google Scholar]
  111. OhnoM. KitanakaC. MiyakitaY. TanakaS. SonodaY. MishimaK. IshikawaE. TakahashiM. YanagisawaS. OhashiK. NaganeM. NaritaY. Metformin with temozolomide for newly diagnosed glioblastoma: Results of phase I study and a brief review of relevant studies.Cancers20221417422210.3390/cancers1417422236077758
    [Google Scholar]
  112. YangC. KoB. HensleyC.T. JiangL. WastiA.T. KimJ. SudderthJ. CalvarusoM.A. LumataL. MitscheM. RutterJ. MerrittM.E. DeBerardinisR.J. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.Mol. Cell201456341442410.1016/j.molcel.2014.09.02525458842
    [Google Scholar]
  113. GriguerC.E. CantorA.B. ShaykhF.H.M. GillespieG.Y. GordonA.S. MarkertJ.M. RadovanovicI. SchatloC.V. ShannonC.N. OlivaC.R. Prognostic relevance of cytochrome C oxidase in primary glioblastoma multiforme.PLoS One201384e6103510.1371/journal.pone.006103523593382
    [Google Scholar]
  114. MistryA.M. On the subventricular zone origin of human glioblastoma.Transl. Cancer Res.201981111310.21037/tcr.2018.11.3130873355
    [Google Scholar]
  115. FanH.C. ChenC.M. ChiC.S. TsaiJ.D. ChiangK.L. ChangY.K. LinS.Z. HarnH.J. Targeting telomerase and ATRX/DAXX inducing tumor senescence and apoptosis in the malignant glioma.Int. J. Mol. Sci.201920120010.3390/ijms2001020030625996
    [Google Scholar]
  116. SalloumR. HummelT.R. KumarS.S. DorrisK. LiS. LinT. DaryaniV.M. StewartC.F. MilesL. PoussaintT.Y. StevensonC. GoldmanS. DhallG. PackerR. FisherP. PollackI.F. FouladiM. BoyettJ. DrissiR. A molecular biology and phase II study of imetelstat (GRN163L) in children with recurrent or refractory central nervous system malignancies: A pediatric brain tumor consortium study.J. Neurooncol.2016129344345110.1007/s11060‑016‑2189‑727350411
    [Google Scholar]
  117. YenS-Y. ChenS-R. HsiehJ. LiY-S. ChuangS-E. ChuangH-M. HuangM-H. LinS-Z. HarnH-J. ChiouT-W. Biodegradable interstitial release polymer loading a novel small molecule targeting Axl receptor tyrosine kinase and reducing brain tumour migration and invasion.Oncogene201635172156216510.1038/onc.2015.27726257061
    [Google Scholar]
  118. MeijerDH MaguireCA LeroySG EstevesS.M Controlling brain tumor growth by intraventricular administration of an AAV vector encoding IFN-β.Canc. Gene Ther.200916866467110.1038/cgt.2009.8
    [Google Scholar]
  119. KimD.G. KimK.H. SeoY.J. YangH. MarcussonE.G. SonE. LeeK. SaJ.K. LeeH.W. NamD.H. Anti-miR delivery strategies to bypass the blood-brain barrier in glioblastoma therapy.Oncotarget2016720294002941110.18632/oncotarget.883727102443
    [Google Scholar]
  120. BrownC.E. AguilarB. StarrR. YangX. ChangW.C. WengL. ChangB. SarkissianA. BritoA. SanchezJ.F. OstbergJ.R. D’ApuzzoM. BadieB. BarishM.E. FormanS.J. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma.Mol. Ther.2018261314410.1016/j.ymthe.2017.10.00229103912
    [Google Scholar]
  121. Portnow J. A Pilot Feasibility Study of Oral 5-Fluorocytosine and Genetically-Modified Neural Stem Cells Expressing E. Coli Cytosine Deaminase for Treatment of Recurrent High Grade Gliomas. 2010, Available from: https://clinicaltrials.gov/ct2/show/NCT01172964.
  122. Genetically modified neural stem cells, flucytosine, and leucovorin for treating patients with recurrent high-grade gliomas.Available from: https://clinicaltrials.gov/ct2/show/NCT02015819
  123. Neural stem cell based virotherapy of newly diagnosed malignant glioma.Available from: https://clinicaltrials.gov/ct2/show/NCT03072134
  124. Oncolytic adenovirus DNX-2401 in treating patients with recurrent high-grade glioma.Available from: https://clinicaltrials.gov/ct2/show/NCT03896568
  125. BexellD. GunnarssonS. SvenssonA. TorminA. OliveiraH.C. SiesjöP. PaulG. SalfordL.G. SchedingS. BengzonJ. Rat multipotent mesenchymal stromal cells lack long-distance tropism to 3 different rat glioma models.Neurosurgery201270373173910.1227/NEU.0b013e318232dedd21869725
    [Google Scholar]
  126. GutovaM. FloresL. AdhikarlaV. TsaturyanL. TirughanaR. AramburoS. MetzM. GonzagaJ. AnnalaA. SynoldT.W. PortnowJ. RockneR.C. AboodyK.S. Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma.Front. Oncol.201996810.3389/fonc.2019.0006830838174
    [Google Scholar]
  127. PancianiP.P. FontanellaM. TamagnoI. BattagliaL. GarbossaD. InghiramiG. FagioliF. PaganoM. DucatiA. LanotteM. Stem cells based therapy in high grade glioma: Why the intraventricular route should be preferred?J. Neurosurg. Sci.201256322122922854590
    [Google Scholar]
  128. KloppA.H. GuptaA. SpaethE. AndreeffM. MariniF.III Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth?Stem Cells2011291111910.1002/stem.55921280155
    [Google Scholar]
  129. ChangE.L. WefelJ.S. HessK.R. AllenP.K. LangF.F. KornguthD.G. ArbuckleR.B. SwintJ.M. ShiuA.S. MaorM.H. MeyersC.A. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial.Lancet Oncol.200910111037104410.1016/S1470‑2045(09)70263‑319801201
    [Google Scholar]
  130. FaresJ. AhmedA.U. UlasovI.V. SonabendA.M. MiskaJ. ChangL.C. BalyasnikovaI.V. ChandlerJ.P. PortnowJ. TateM.C. KumthekarP. LukasR.V. GrimmS.A. AdamsA.K. HébertC.D. StrongT.V. AmideiC. ArrietaV.A. ZannikouM. HorbinskiC. ZhangH. BurdettK.B. CurielD.T. SachdevS. AboodyK.S. StuppR. LesniakM.S. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: A first-in-human, phase 1, dose-escalation trial.Lancet Oncol.20212281103111410.1016/S1470‑2045(21)00245‑X34214495
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X341526250113064851
Loading
/content/journals/cscr/10.2174/011574888X341526250113064851
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test