Skip to content
2000
image of Molecular Mechanisms and Pathways of Mesenchymal Stem Cell-mediated Therapy in Brain Cancer

Abstract

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach in the treatment of brain cancer due to their unique biological properties, including their ability to home tumor sites, modulate the tumor microenvironment, and exert anti-tumor effects. This review delves into the molecular mechanisms and pathways underlying MSC-mediated therapy in brain cancer. We explore the various signalling pathways activated by MSCs that contribute to their therapeutic efficacy, such as the PI3K/Akt, Wnt/β-catenin, and Notch pathways. Additionally, we discuss the role of exosomes and microRNAs secreted by MSCs in mediating anti-tumor effects. The review also addresses the challenges and future directions in optimizing MSC-based therapies for brain cancer, including issues related to MSC sourcing, delivery methods, and potential side effects. Through a comprehensive understanding of these mechanisms and pathways, we aim to highlight the potential of MSCs as a viable therapeutic option for brain cancer and to guide future research in this field.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X341525250116052000
2025-01-23
2025-05-09
Loading full text...

Full text loading...

References

  1. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  2. Hanif F. Muzaffar K. Perveen K. Malhi S.M. Simjee ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev. 2017 18 1 3 9 28239999
    [Google Scholar]
  3. Tamimi A.F. Juweid M. Epidemiology and Outcome of Glioblastoma. Glioblastoma Brisbane 2017 143 153
    [Google Scholar]
  4. Ullah I. Subbarao R.B. Rho G.J. Human mesenchymal stem cells: Current trends and future prospective. Biosci. Rep. 2015 35 2 e00191 10.1042/BSR20150025 25797907
    [Google Scholar]
  5. Do A.D. Kurniawati I. Hsieh C.L. Wong T.T. Lin Y.L. Sung S.Y. Application of mesenchymal stem cells in targeted delivery to the brain: potential and challenges of the extracellular vesicle-based approach for brain tumor treatment. Int. J. Mol. Sci. 2021 22 20 11187 10.3390/ijms222011187 34681842
    [Google Scholar]
  6. Fan L. Wei A. Gao Z. Mu X. Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy. Biomed. Pharmacother. 2023 161 114451 10.1016/j.biopha.2023.114451 36870279
    [Google Scholar]
  7. Xuan X. Tian C. Zhao M. Sun Y. Huang C. Mesenchymal stem cells in cancer progression and anticancer therapeutic resistance. Cancer Cell Int. 2021 21 1 595 10.1186/s12935‑021‑02300‑4 34736460
    [Google Scholar]
  8. Bagno L.L. Salerno A.G. Balkan W. Hare J.M. Mechanism of action of mesenchymal stem cells (MSCs): Impact of delivery method. Expert Opin. Biol. Ther. 2022 22 4 449 463 10.1080/14712598.2022.2016695 34882517
    [Google Scholar]
  9. Mansouri V. Beheshtizadeh N. Gharibshahian M. Sabouri L. Varzandeh M. Rezaei N. Recent advances in regenerative medicine strategies for cancer treatment. Biomed. Pharmacother. 2021 141 111875 10.1016/j.biopha.2021.111875 34229250
    [Google Scholar]
  10. Zhao Q. Ren H. Han Z. Mesenchymal stem cells: Immunomodulatory capability and clinical potential in immune diseases. J. Cellular Immunotherap. 2016 2 1 3 20 10.1016/j.jocit.2014.12.001
    [Google Scholar]
  11. Jin H. Bae Y. Kim M. Kwon S.J. Jeon H. Choi S. Kim S. Yang Y. Oh W. Chang J. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int. J. Mol. Sci. 2013 14 9 17986 18001 10.3390/ijms140917986 24005862
    [Google Scholar]
  12. Bozorgmehr M. Gurung S. Darzi S. Nikoo S. Kazemnejad S. Zarnani A.H. Gargett C.E. Endometrial and menstrual blood mesenchymal stem/stromal cells: Biological properties and clinical application. Front. Cell Dev. Biol. 2020 8 497 10.3389/fcell.2020.00497 32742977
    [Google Scholar]
  13. Song N. Scholtemeijer M. Shah K. mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential. Trends Pharmacol. Sci. 2020 41 9 653 664 10.1016/j.tips.2020.06.009 32709406
    [Google Scholar]
  14. Lohan P. Treacy O. Griffin M.D. Ritter T. Ryan A.E. Anti-donor immune responses elicited by allogeneic mesenchymal stem cells and their extracellular vesicles: Are we still learning? Front. Immunol. 2017 8 NOV 1626 10.3389/fimmu.2017.01626 29225601
    [Google Scholar]
  15. Hoang D.M. Pham P.T. Bach T.Q. Ngo A.T.L. Nguyen Q.T. Phan T.T.K. Nguyen G.H. Le P.T.T. Hoang V.T. Forsyth N.R. Heke M. Nguyen L.T. Stem cell-based therapy for human diseases. Signal Transduct. Target. Ther. 2022 7 1 272 10.1038/s41392‑022‑01134‑4 35933430
    [Google Scholar]
  16. Liu Y. Chen Q. Senescent mesenchymal stem cells: Disease mechanism and treatment strategy. Curr. Mol. Biol. Rep. 2020 6 4 173 182 10.1007/s40610‑020‑00141‑0 33816065
    [Google Scholar]
  17. Yang Y.H.K. Aging of mesenchymal stem cells: Implication in regenerative medicine. Regen. Ther. 2018 9 120 122 10.1016/j.reth.2018.09.002 30525083
    [Google Scholar]
  18. Orbay H. Tobita M. Mizuno H. Mesenchymal stem cells isolated from adipose and other tissues: Basic biological properties and clinical applications. Stem. Cells. Int. 2012 2012 1 9 10.1155/2012/461718 22666271
    [Google Scholar]
  19. Mastrolia I. Foppiani E.M. Murgia A. Candini O. Samarelli A.V. Grisendi G. Veronesi E. Horwitz E.M. Dominici M. Challenges in clinical development of mesenchymal stromal/stem cells: Concise review. Stem. Cells. Transl. Med. 2019 8 11 1135 1148 10.1002/sctm.19‑0044 31313507
    [Google Scholar]
  20. Han Y. Li X. Zhang Y. Han Y. Chang F. Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019 8 8 886 10.3390/cells8080886 31412678
    [Google Scholar]
  21. Joyce N. Annett G. Wirthlin L. Olson S. Bauer G. Nolta J.A. Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 2010 5 6 933 946 10.2217/rme.10.72 21082892
    [Google Scholar]
  22. Ullah M. Liu D.D. Thakor A.S. Mesenchymal stromal cell homing: Mechanisms and strategies for improvement. iScience 2019 15 421 438 10.1016/j.isci.2019.05.004 31121468
    [Google Scholar]
  23. Luissint A.C. Artus C. Glacial F. Ganeshamoorthy K. Couraud P.O. Tight junctions at the blood brain barrier: Physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012 9 1 23 10.1186/2045‑8118‑9‑23 23140302
    [Google Scholar]
  24. Zhou L. Zhu H. Bai X. Huang J. Chen Y. Wen J. Li X. Wu B. Tan Y. Tian M. Ren J. Li M. Yang Q. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke. Stem Cell Res. Ther. 2022 13 1 195 10.1186/s13287‑022‑02876‑2 35551643
    [Google Scholar]
  25. Shah K. Stem cell-based therapies for tumors in the brain: Are we there yet? Neuro-oncol. 2016 18 8 1066 1078 10.1093/neuonc/now096 27282399
    [Google Scholar]
  26. Guo W. Zhang X. Zhai J. Xue J. The roles and applications of neural stem cells in spinal cord injury repair. Front. Bioeng. Biotechnol. 2022 10 966866 10.3389/fbioe.2022.966866 36105599
    [Google Scholar]
  27. Steens J. Klein D. Current strategies to generate human mesenchymal stem cells in vitro. Stem. Cells. Int. 2018 2018 1 10 10.1155/2018/6726185 30224922
    [Google Scholar]
  28. Jimenez-Puerta G. Marchal J. López-Ruiz E. Gálvez-Martín P. Role of mesenchymal stromal cells as therapeutic agents: Potential mechanisms of action and implications in their clinical use. J. Clin. Med. 2020 9 2 445 10.3390/jcm9020445 32041213
    [Google Scholar]
  29. Liang W. Chen X. Zhang S. Fang J. Chen M. Xu Y. Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: Focusing on MSC-derived cytokines. Cell. Mol. Biol. Lett. 2021 26 1 3 10.1186/s11658‑020‑00246‑5 33472580
    [Google Scholar]
  30. Wang M. Li J. Wang D. Xin Y. Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed. Pharmacother. 2023 160 114373 10.1016/j.biopha.2023.114373 36753960
    [Google Scholar]
  31. Prabha S. Merali C. Sehgal D. Nicolas E. Bhaskar N. Flores M. Bhatnagar S. Nethi S.K. Barrero C.A. Merali S. Panyam J. Incorporation of paclitaxel in mesenchymal stem cells using nanoengineering upregulates antioxidant response, CXCR4 expression and enhances tumor homing. Mater. Today Bio 2023 19 100567 10.1016/j.mtbio.2023.100567 36747581
    [Google Scholar]
  32. Nwabo K.A.H. Kamga P.T. Simo R.T. Vecchio L. Seke E.P.F. Muller J.M. Bassi G. Lukong E. Goel R.K. Amvene J.M. Krampera M. Mesenchymal stromal cells’ role in tumor microenvironment: involvement of signaling pathways. Cancer Biol. Med. 2017 14 2 129 141 10.20892/j.issn.2095‑3941.2016.0033 28607804
    [Google Scholar]
  33. Qi X. Jha S.K. Jha N.K. Dewanjee S. Dey A. Deka R. Pritam P. Ramgopal K. Liu W. Hou K. Antioxidants in brain tumors: Current therapeutic significance and future prospects. Mol. Cancer 2022 21 1 204 10.1186/s12943‑022‑01668‑9 36307808
    [Google Scholar]
  34. Li C. Zhao H. Wang B. Mesenchymal stem/stromal cells: Developmental origin, tumorigenesis and translational cancer therapeutics. Transl. Oncol. 2021 14 1 100948 10.1016/j.tranon.2020.100948 33190044
    [Google Scholar]
  35. Cheng S. Nethi S.K. Rathi S. Layek B. Prabha S. Engineered mesenchymal stem cells for targeting solid tumors: Therapeutic potential beyond regenerative therapy. J. Pharmacol. Exp. Ther. 2019 370 2 231 241 10.1124/jpet.119.259796 31175219
    [Google Scholar]
  36. Karami Fath M. Moayedi Banan Z. Barati R. Mohammadrezakhani O. Ghaderi A. Hatami A. Ghiabi S. Zeidi N. Asgari K. Payandeh Z. Barati G. Recent advancements to engineer mesenchymal stem cells and their extracellular vesicles for targeting and destroying tumors. Prog. Biophys. Mol. Biol. 2023 178 1 16 10.1016/j.pbiomolbio.2023.02.001 36781149
    [Google Scholar]
  37. Liu T. Guo S. Ji Y. Zhu W. Role of cancer-educated mesenchymal stromal cells on tumor progression. Biomed. Pharmacother. 2023 166 115405 10.1016/j.biopha.2023.115405 37660642
    [Google Scholar]
  38. Ridge S.M. Sullivan F.J. Glynn S.A. Mesenchymal stem cells: Key players in cancer progression. Mol. Cancer 2017 16 1 31 10.1186/s12943‑017‑0597‑8 28148268
    [Google Scholar]
  39. Yagi H. Kitagawa Y. The role of mesenchymal stem cells in cancer development. Front. Genet. 2013 4 NOV 261 10.3389/fgene.2013.00261 24348516
    [Google Scholar]
  40. Nitzsche F. Müller C. Lukomska B. Jolkkonen J. Deten A. Boltze J. Concise review: MSC adhesion cascade—insights into homing and transendothelial migration. Stem Cells 2017 35 6 1446 1460 10.1002/stem.2614 28316123
    [Google Scholar]
  41. Sarsenova M. Kim Y. Raziyeva K. Kazybay B. Ogay V. Saparov A. Recent advances to enhance the immunomodulatory potential of mesenchymal stem cells. Front. Immunol. 2022 13 1010399 10.3389/fimmu.2022.1010399 36211399
    [Google Scholar]
  42. Galderisi U. Giordano A. The gap between the physiological and therapeutic roles of mesenchymal stem cells. Med. Res. Rev. 2014 34 5 1100 1126 10.1002/med.21322 24866817
    [Google Scholar]
  43. Abbasi B. Shamsasenjan K. Ahmadi M. Beheshti S.A. Saleh M. Mesenchymal stem cells and natural killer cells interaction mechanisms and potential clinical applications. Stem. Cell. Res. Ther. 2022 13 1 97 10.1186/s13287‑022‑02777‑4 35255980
    [Google Scholar]
  44. da Silva Meirelles L. Fontes A.M. Covas D.T. Caplan A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine. Growth. Factor. Rev. 2009 20 5-6 419 427 10.1016/j.cytogfr.2009.10.002 19926330
    [Google Scholar]
  45. Luo Y. Zhang H. Yu J. Wei L. Li M. Xu W. Stem cell factor/mast cell/ CCL2 /monocyte/macrophage axis promotes Coxsackievirus B3 myocarditis and cardiac fibrosis by increasing Ly6C high monocyte influx and fibrogenic mediators production. Immunology 2022 167 4 590 605 10.1111/imm.13556 36054617
    [Google Scholar]
  46. de Almeida D.C. Donizetti-Oliveira C. Barbosa-Costa P. Origassa C.S. Câmara N.O. In search of mechanisms associated with mesenchymal stem cell-based therapies for acute kidney injury. Clin. Biochem. Rev. 2013 34 3 131 144 24353358
    [Google Scholar]
  47. Deshane J. Chen S. Caballero S. Grochot-Przeczek A. Was H. Li Calzi S. Lach R. Hock T.D. Chen B. Hill-Kapturczak N. Siegal G.P. Dulak J. Jozkowicz A. Grant M.B. Agarwal A. Stromal cell–derived factor 1 promotes angiogenesis via a heme oxygenase 1–dependent mechanism. J. Exp. Med. 2007 204 3 605 618 10.1084/jem.20061609 17339405
    [Google Scholar]
  48. Bian D. Wu Y. Song G. Azizi R. Zamani A. The application of mesenchymal stromal cells (MSCs) and their derivative exosome in skin wound healing: A comprehensive review. Stem. Cell. Res. Ther. 2022 13 1 24 10.1186/s13287‑021‑02697‑9 35073970
    [Google Scholar]
  49. Pavon L.F. Sibov T.T. de Oliveira D.M. Marti L.C. Cabral F.R. de Souza J.G. Boufleur P. Malheiros S.M.F. de Paiva Neto M.A. da Cruz E.F. Chudzinski-Tavassi A.M. Cavalheiro S. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells. Oncotarget 2016 7 26 40546 40557 10.18632/oncotarget.9658 27244897
    [Google Scholar]
  50. Babajani A. Soltani P. Jamshidi E. Farjoo M.H. Niknejad H. Recent advances on drug-loaded mesenchymal stem cells with anti- neoplastic agents for targeted treatment of cancer. Front. Bioeng. Biotechnol. 2020 8 748 10.3389/fbioe.2020.00748 32793565
    [Google Scholar]
  51. Mühlethaler-Mottet A. Liberman J. Ascenção K. Flahaut M. Balmas Bourloud K. Yan P. Jauquier N. Gross N. Joseph J.M. The CXCR4/CXCR7/CXCL12 axis is involved in a secondary but complex control of neuroblastoma metastatic cell homing. PLoS One 2015 10 5 e0125616 10.1371/journal.pone.0125616 25955316
    [Google Scholar]
  52. Chaturvedi P. Gilkes D.M. Takano N. Semenza G.L. Hypoxia-inducible factor-dependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophage recruitment. Proc. Natl. Acad. Sci. USA 2014 111 20 E2120 E2129 10.1073/pnas.1406655111 24799675
    [Google Scholar]
  53. Zhong W. Tong Y. Li Y. Yuan J. Hu S. Hu T. Song G. Mesenchymal stem cells in inflammatory microenvironment potently promote metastatic growth of cholangiocarcinoma via activating Akt/NF-κB signaling by paracrine CCL5. Oncotarget 2017 8 43 73693 73704 10.18632/oncotarget.17793 29088737
    [Google Scholar]
  54. Liu Y. Chen J. Liang H. Cai Y. Li X. Yan L. Zhou L. Shan L. Wang H. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem. Cell. Res. Ther. 2022 13 1 258 10.1186/s13287‑022‑02927‑8 35715841
    [Google Scholar]
  55. Lee J.H. Massagué J. TGF-β in developmental and fibrogenic EMTs. Semin. Cancer Biol. 2022 86 Pt 2 136 145 36183999
    [Google Scholar]
  56. Fang Z. Meng Q. Xu J. Wang W. Zhang B. Liu J. Liang C. Hua J. Zhao Y. Yu X. Shi S. Signaling pathways in cancer‐associated fibroblasts: Recent advances and future perspectives. Cancer Commun. (Lond.) 2023 43 1 3 41 10.1002/cac2.12392 36424360
    [Google Scholar]
  57. Zhuang W.Z. Lin Y.H. Su L.J. Wu M.S. Jeng H.Y. Chang H.C. Huang Y.H. Ling T.Y. Mesenchymal stem/stromal cell-based therapy: Mechanism, systemic safety and biodistribution for precision clinical applications. J. Biomed. Sci. 2021 28 1 28 10.1186/s12929‑021‑00725‑7 33849537
    [Google Scholar]
  58. Zhang B. Shang L. Zhang Y. Li T. Fang Y. The effect of bone marrow mesenchymal stem cells on highly metastatic MHCC97‑H hepatocellular carcinoma cells following OPN and TGFβ1 gene silencing. Exp. Ther. Med. 2020 20 4 3633 3642 10.3892/etm.2020.9106 32855715
    [Google Scholar]
  59. Becker A. Thakur B.K. Weiss J.M. Kim H.S. Peinado H. Lyden D. Extracellular vesicles in cancer: Cell-to-cell mediators of metastasis. Cancer Cell 2016 30 6 836 848 10.1016/j.ccell.2016.10.009 27960084
    [Google Scholar]
  60. Zhang Z. Hu J. Ishihara M. Sharrow A.C. Flora K. He Y. Wu L. The miRNA-21-5p payload in exosomes from M2 macrophages drives tumor cell aggression via PTEN/Akt Signaling in Renal Cell Carcinoma. Int. J. Mol. Sci. 2022 23 6 3005 10.3390/ijms23063005 35328425
    [Google Scholar]
  61. Weng Z. Zhang B. Wu C. Yu F. Han B. Li B. Li L. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J. Hematol. Oncol. 2021 14 1 136 10.1186/s13045‑021‑01141‑y 34479611
    [Google Scholar]
  62. Khan A. Ahmed E. Elareer N. Junejo K. Steinhoff M. Uddin S. Role of miRNA-regulated cancer stem cells in the pathogenesis of human malignancies. Cells 2019 8 8 840 10.3390/cells8080840 31530793
    [Google Scholar]
  63. Huang B. Zhao J. Lei Z. Shen S. Li D. Shen G.X. Zhang G.M. Feng Z.H. miR‐142‐3p restricts cAMP production in CD4 + CD25 − T cells and CD4 + CD25 + T REG cells by targeting AC9 mRNA. EMBO Rep. 2009 10 2 180 185 10.1038/embor.2008.224 19098714
    [Google Scholar]
  64. Kosaka N. Yoshioka Y. Fujita Y. Ochiya T. Versatile roles of extracellular vesicles in cancer. J. Clin. Invest. 2016 126 4 1163 1172 10.1172/JCI81130 26974161
    [Google Scholar]
  65. Zheng P. Chen L. Yuan X. Luo Q. Liu Y. Xie G. Ma Y. Shen L. Exosomal transfer of tumor-associated macrophage-derived miR-21 confers cisplatin resistance in gastric cancer cells. J. Exp. Clin. Cancer Res. 2017 36 1 53 10.1186/s13046‑017‑0528‑y 28407783
    [Google Scholar]
  66. Ren W. Hou J. Yang C. Wang H. Wu S. Wu Y. Zhao X. Lu C. Extracellular vesicles secreted by hypoxia pre-challenged mesenchymal stem cells promote non-small cell lung cancer cell growth and mobility as well as macrophage M2 polarization via miR-21-5p delivery. J. Exp. Clin. Cancer Res. 2019 38 1 62 10.1186/s13046‑019‑1027‑0 30736829
    [Google Scholar]
  67. Jiao X. Qian X. Wu L. Li B. Wang Y. Kong X. Xiong L. microRNA: The impact on cancer stemness and therapeutic resistance. Cells 2019 9 1 8 10.3390/cells9010008 31861404
    [Google Scholar]
  68. Ono M. Kosaka N. Tominaga N. Yoshioka Y. Takeshita F. Takahashi R. Yoshida M. Tsuda H. Tamura K. Ochiya T. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci. Signal. 2014 7 332 ra63 10.1126/scisignal.2005231 24985346
    [Google Scholar]
  69. Li C. Feng S. Chen L. MicroRNA-142-3p inhibits proliferation and induces apoptosis by targeting the high-mobility group box 1 via the Wnt/β-catenin signaling pathway in glioma. Int. J. Clin. Exp. Pathol. 2018 11 9 4493 4502 31949846
    [Google Scholar]
  70. Jin L. Wessely O. Marcusson E.G. Ivan C. Calin G.A. Alahari S.K. Prooncogenic factors miR-23b and miR-27b are regulated by Her2/ Neu, EGF, and TNF-α in breast cancer. Cancer Res. 2013 73 9 2884 2896 10.1158/0008‑5472.CAN‑12‑2162 23338610
    [Google Scholar]
  71. Zonderland J. Gomes D.B. Pallada Y. Moldero I.L. Camarero-Espinosa S. Moroni L. Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. Stem. Cells. 2020 38 8 948 959 10.1002/stem.3198 32379914
    [Google Scholar]
  72. Krawczenko A. Klimczak A. Adipose tissue-derived mesenchymal stem/stromal cells and their contribution to angiogenic processes in tissue regeneration. Int. J. Mol. Sci. 2022 23 5 2425 10.3390/ijms23052425 35269568
    [Google Scholar]
  73. Fan X.L. Zhang Y. Li X. Fu Q.L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell. Mol. Life Sci. 2020 77 14 2771 2794 10.1007/s00018‑020‑03454‑6 31965214
    [Google Scholar]
  74. Huang Y. Wu Q. Tam P.K.H. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications. Int. J. Mol. Sci. 2022 23 17 10023 10.3390/ijms231710023 36077421
    [Google Scholar]
  75. Jiang W. Xu J. Immune modulation by mesenchymal stem cells. Cell Prolif. 2020 53 1 e12712 10.1111/cpr.12712 31730279
    [Google Scholar]
  76. Rafei M. Hsieh J. Fortier S. Li M. Yuan S. Birman E. Forner K. Boivin M.N. Doody K. Tremblay M. Annabi B. Galipeau J. Mesenchymal stromal cell–derived CCL2 suppresses plasma cell immunoglobulin production via STAT3 inactivation and PAX5 induction. Blood 2008 112 13 4991 4998 10.1182/blood‑2008‑07‑166892 18812467
    [Google Scholar]
  77. Shi Q. Fahs S.A. Wilcox D.A. Kuether E.L. Morateck P.A. Mareno N. Weiler H. Montgomery R.R. Syngeneic transplantation of hematopoietic stem cells that are genetically modified to express factor VIII in platelets restores hemostasis to hemophilia A mice with preexisting FVIII immunity. Blood 2008 112 7 2713 2721 10.1182/blood‑2008‑02‑138214 18495954
    [Google Scholar]
  78. Attia N. Mashal M. Puras G. Pedraz J.L. Mesenchymal stem cells as a gene delivery tool: Promise, problems, and prospects. Pharmaceutics 2021 13 6 843 10.3390/pharmaceutics13060843 34200425
    [Google Scholar]
  79. Ocansey D.K.W. Pei B. Yan Y. Qian H. Zhang X. Xu W. Mao F. Improved therapeutics of modified mesenchymal stem cells: An update. J. Transl. Med. 2020 18 1 42 10.1186/s12967‑020‑02234‑x 32000804
    [Google Scholar]
  80. Kahrizi M.S. Mousavi E. Khosravi A. Rahnama S. Salehi A. Nasrabadi N. Ebrahimzadeh F. Jamali S. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure: A comprehensive review of preclinical studies. Stem Cell Res. Ther. 2023 14 1 155 10.1186/s13287‑023‑03374‑9 37287066
    [Google Scholar]
  81. Soares M.B.P. Gonçalves R.G.J. Vasques J.F. da Silva-Junior A.J. Gubert F. Santos G.C. de Santana T.A. Almeida Sampaio G.L. Silva D.N. Dominici M. Mendez-Otero R. Current status of mesenchymal stem/stromal cells for treatment of neurological diseases. Front. Mol. Neurosci. 2022 15 883378 10.3389/fnmol.2022.883378 35782379
    [Google Scholar]
  82. Kouzarides T. Chromatin modifications and their function. Cell 2007 128 4 693 705 10.1016/j.cell.2007.02.005 17320507
    [Google Scholar]
  83. Smith N. Shirazi S. Cakouros D. Gronthos S. Impact of environmental and epigenetic changes on mesenchymal stem cells during aging. Int. J. Mol. Sci. 2023 24 7 6499 10.3390/ijms24076499 37047469
    [Google Scholar]
  84. Lai Z. Shu Q. Song Y. Tang A. Tian J. Effect of DNA methylation on the osteogenic differentiation of mesenchymal stem cells: Concise review. Front. Genet. 2024 15 1429844 10.3389/fgene.2024.1429844 39015772
    [Google Scholar]
  85. Sun Y. Zhang H. Qiu T. Liao L. Su X. Epigenetic regulation of mesenchymal stem cell aging through histone modifications. Genes Dis. 2023 10 6 2443 2456 10.1016/j.gendis.2022.10.030 37554203
    [Google Scholar]
  86. Zhao Z. Zhang L. Ocansey D.K.W. Wang B. Mao F. The role of mesenchymal stem cell-derived exosome in epigenetic modifications in inflammatory diseases. Front. Immunol. 2023 14 1166536 10.3389/fimmu.2023.1166536 37261347
    [Google Scholar]
  87. Aravindhan S. Ejam S.S. Lafta M.H. Markov A. Yumashev A.V. Ahmadi M. Mesenchymal stem cells and cancer therapy: Insights into targeting the tumour vasculature. Cancer. Cell. Int. 2021 21 1 158 10.1186/s12935‑021‑01836‑9 33685452
    [Google Scholar]
  88. Sironi F. De Marchi F. Mazzini L. Bendotti C. Cell therapy in ALS: An update on preclinical and clinical studies. Brain Res. Bull. 2023 194 64 81 10.1016/j.brainresbull.2023.01.008 36690163
    [Google Scholar]
  89. Pittenger M.F. Discher D.E. Péault B.M. Phinney D.G. Hare J.M. Caplan A.I. Mesenchymal stem cell perspective: Cell biology to clinical progress. npj. Regen. Med. 2019 4 1 1 15 30570390
    [Google Scholar]
  90. Luo T. von der Ohe J. Hass R. MSC-derived extracellular vesicles in tumors and therapy. Cancers 2021 13 20 5212 10.3390/cancers13205212 34680359
    [Google Scholar]
  91. Zaripova L.N. Midgley A. Christmas S.E. Beresford M.W. Pain C. Baildam E.M. Oldershaw R.A. Mesenchymal stem cells in the pathogenesis and therapy of autoimmune and autoinflammatory diseases. Int. J. Mol. Sci. 2023 24 22 16040 10.3390/ijms242216040 38003230
    [Google Scholar]
  92. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  93. Bexell D. Scheding S. Bengzon J. Toward brain tumor gene therapy using multipotent mesenchymal stromal cell vectors. Mol. Ther. 2010 18 6 1067 1075 10.1038/mt.2010.58 20407426
    [Google Scholar]
  94. Ghasempour E. Hesami S. Movahed E. keshel S.H. Doroudian M. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors. Stem Cell Res. Ther. 2022 13 1 527 10.1186/s13287‑022‑03212‑4 34998430
    [Google Scholar]
  95. Ryu S. Broussard L. Youn C. Song B. Norris D. Armstrong C.A. Kim B. Song P.I. Therapeutic effects of synthetic antimicrobial peptides, TRAIL and NRP1 blocking peptides in psoriatic keratinocytes. Chonnam Med. J. 2019 55 2 75 85 10.4068/cmj.2019.55.2.75 31161119
    [Google Scholar]
  96. Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin. Immunol. 2018 35 69 79 10.1016/j.smim.2017.12.003 29289420
    [Google Scholar]
  97. Lin Z. Wu Y. Xu Y. Li G. Li Z. Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: Recent advances and therapeutic potential. Mol. Cancer 2022 21 1 179 10.1186/s12943‑022‑01650‑5 36100944
    [Google Scholar]
  98. Afkhami H. Mahmoudvand G. Fakouri A. Shadab A. Mahjoor M. Komeili Movahhed T. New insights in application of mesenchymal stem cells therapy in tumor microenvironment: Pros and cons. Front. Cell Dev. Biol. 2023 11 1255697 10.3389/fcell.2023.1255697 37849741
    [Google Scholar]
  99. Kazimirsky G. Jiang W. Slavin S. Ziv-Av A. Brodie C. Mesenchymal stem cells enhance the oncolytic effect of Newcastle disease virus in glioma cells and glioma stem cells via the secretion of TRAIL. Stem Cell Res. Ther. 2016 7 1 149 10.1186/s13287‑016‑0414‑0 27724977
    [Google Scholar]
  100. Gečys D. Skredėnienė R. Gečytė E. Kazlauskas A. Balnytė I. Jekabsone A. Adipose Tissue-derived stem cell extracellular vesicles suppress glioblastoma proliferation, invasiveness and angiogenesis. Cells 2023 12 9 1247 10.3390/cells12091247 37174646
    [Google Scholar]
  101. Seyed-Khorrami S.M. Soleimanjahi H. Soudi S. Habibian A. MSCs loaded with oncolytic reovirus: Migration and in vivo virus delivery potential for evaluating anti-cancer effect in tumor-bearing C57BL/6 mice. Cancer Cell Int. 2021 21 1 244 10.1186/s12935‑021‑01848‑5 33933086
    [Google Scholar]
  102. Silva M. Monteiro G.A. Fialho A.M. Bernardes N. da Silva C.L. Conditioned medium from azurin-expressing human mesenchymal stromal cells demonstrates antitumor activity against breast and lung cancer cell Lines. Front. Cell Dev. Biol. 2020 8 471 10.3389/fcell.2020.00471 32733876
    [Google Scholar]
  103. Hmadcha A. Martin-Montalvo A. Gauthier B.R. Soria B. Capilla- Gonzalez V. Therapeutic potential of mesenchymal stem cells for cancer therapy. Front. Bioeng. Biotechnol. 2020 8 43 10.3389/fbioe.2020.00043 32117924
    [Google Scholar]
  104. Yoon A.R. Rivera-Cruz C. Gimble J.M. Yun C.O. Figueiredo M.L. Immunotherapy by mesenchymal stromal cell delivery of oncolytic viruses for treating metastatic tumors. Mol. Ther. Oncolytics 2022 25 78 97 10.1016/j.omto.2022.03.008 35434272
    [Google Scholar]
  105. Pessina A. Bonomi A. Coccè V. Invernici G. Navone S. Cavicchini L. Sisto F. Ferrari M. Viganò L. Locatelli A. Ciusani E. Cappelletti G. Cartelli D. Arnaldo C. Parati E. Marfia G. Pallini R. Falchetti M.L. Alessandri G. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy. PLoS One 2011 6 12 e28321 10.1371/journal.pone.0028321 22205945
    [Google Scholar]
  106. Golinelli G. Mastrolia I. Aramini B. Masciale V. Pinelli M. Pacchioni L. Casari G. Dall’Ora M. Soares M.B.P. Damasceno P.K.F. Silva D.N. Dominici M. Grisendi G. Arming mesenchymal stromal/stem cells against cancer: Has the time come? Front. Pharmacol. 2020 11 529921 10.3389/fphar.2020.529921 33117154
    [Google Scholar]
  107. Zheng X.B. He X.W. Zhang L.J. Qin H.B. Lin X.T. Liu X.H. Zhou C. Liu H.S. Hu T. Cheng H.C. He X.S. Wu X.R. Chen Y.F. Ke J. Wu X.J. Lan P. Bone marrow-derived CXCR4-overexpressing MSCs display increased homing to intestine and ameliorate colitis-associated tumorigenesis in mice. Gastroenterol. Rep. (Oxf.) 2019 7 2 127 138 10.1093/gastro/goy017 30976426
    [Google Scholar]
  108. Hassanzadeh A. Rahman H.S. Markov A. Endjun J.J. Zekiy A.O. Chartrand M.S. Beheshtkhoo N. Kouhbanani M.A.J. Marofi F. Nikoo M. Jarahian M. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res. Ther. 2021 12 1 297 10.1186/s13287‑021‑02378‑7 34020704
    [Google Scholar]
  109. Nowakowski A. Drela K. Rozycka J. Janowski M. Lukomska B. Engineered mesenchymal stem cells as an anti-cancer trojan horse. Stem Cells Dev. 2016 25 20 1513 1531 10.1089/scd.2016.0120 27460260
    [Google Scholar]
  110. Bagheri R. Bitazar R. Talebi S. Alaeddini M. Etemad-Moghadam S. Eini L. Conditioned media derived from mesenchymal stem cells induces apoptosis and decreases cell viability and proliferation in squamous carcinoma cell lines. Gene 2021 782 145542 10.1016/j.gene.2021.145542 33675953
    [Google Scholar]
  111. Santillán-Guaján S.M. Shahi M.H. Castresana J.S. Mesenchymal-stem-cell-based therapy against gliomas. Cells 2024 13 7 617 10.3390/cells13070617 38607056
    [Google Scholar]
  112. Rivoltini L. Chiodoni C. Squarcina P. Tortoreto M. Villa A. Vergani B. Bürdek M. Botti L. Arioli I. Cova A. Mauri G. Vergani E. Bianchi B. Della Mina P. Cantone L. Bollati V. Zaffaroni N. Gianni A.M. Colombo M.P. Huber V. TNF-related apoptosis-inducing ligand (TRAIL)–Armed exosomes deliver proapoptotic signals to tumor site. Clin. Cancer Res. 2016 22 14 3499 3512 10.1158/1078‑0432.CCR‑15‑2170 26944067
    [Google Scholar]
  113. Kenarkoohi A. Bamdad T. Soleimani M. Soleimanjahi H. Fallah A. Falahi S. HSV-TK expressing mesenchymal stem cells exert inhibitory effect on cervical cancer model. Int. J. Mol. Cell. Med. 2020 9 2 146 154 32934952
    [Google Scholar]
  114. Calinescu A.A. Kauss M.C. Sultan Z. Al-Holou W.N. O’Shea S.K. Stem cells for the treatment of glioblastoma: A 20-year perspective. CNS Oncol. 2021 10 2 CNS73 10.2217/cns‑2020‑0026 34006134
    [Google Scholar]
  115. Shahror R.A. Wu C.C. Chiang Y.H. Chen K.Y. Genetically modified mesenchymal stem cells: The next generation of stem cell-based therapy for TBI. Int. J. Mol. Sci. 2020 21 11 4051 10.3390/ijms21114051 32516998
    [Google Scholar]
  116. Nia G.E. Nikpayam E. Farrokhi M. Bolhassani A. Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. Mol Ther Oncol 2024 32 1 200788 10.1016/j.omton.2024.200788 38596310
    [Google Scholar]
  117. Taheri M. Tehrani H.A. Dehghani S. Alibolandi M. Arefian E. Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off‐the‐shelf versatile tumor delivery vehicle. Med. Res. Rev. 2024 44 4 1596 1661 10.1002/med.22023 38299924
    [Google Scholar]
  118. Squillaro T. Peluso G. Galderisi U. Clinical trials with mesenchymal stem cells: An update. Cell. Transplant. 2016 25 5 829 848 10.3727/096368915X689622 26423725
    [Google Scholar]
  119. Galderisi U. Peluso G. Di Bernardo G. Clinical trials based on mesenchymal stromal cells are exponentially increasing: Where are we in recent years? Stem Cell Rev. Rep. 2022 18 1 23 36 10.1007/s12015‑021‑10231‑w 34398443
    [Google Scholar]
  120. Jovic D. Yu Y. Wang D. Wang K. Li H. Xu F. Liu C. Liu J. Luo Y. A brief overview of global trends in msc-based cell therapy. Stem. Cell. Rev. Rep. 2022 18 5 1525 1545 10.1007/s12015‑022‑10369‑1 35344199
    [Google Scholar]
  121. Abadi B. Ahmadi-Zeidabadi M. Dini L. Vergallo C. Current status and challenges of stem cell-based therapy for the treating of glioblastoma multiforme Stem cell-based therapy treating glioblastoma multiforme. Hematol. Oncol. Stem Cell Ther. 2021 14 1 1 15 10.1016/j.hemonc.2020.08.001 32971031
    [Google Scholar]
  122. Babar Q. Saeed A. Tabish T.A. Sarwar M. Thorat N.D. Targeting the tumor microenvironment: Potential strategy for cancer therapeutics. Biochim. Biophys. Acta Mol. Basis Dis. 2023 1869 6 166746 10.1016/j.bbadis.2023.166746 37160171
    [Google Scholar]
  123. Cuiffo B.G. Karnoub A.E. Mesenchymal stem cells in tumor development. Cell Adhes. Migr. 2012 6 3 220 230 10.4161/cam.20875 22863739
    [Google Scholar]
  124. Lim S. Khoo B. An overview of mesenchymal stem cells and their potential therapeutic benefits in cancer therapy (Review). Oncol. Lett. 2021 22 5 785 10.3892/ol.2021.13046 34594426
    [Google Scholar]
  125. Dunn C.M. Kameishi S. Grainger D.W. Okano T. Strategies to address mesenchymal stem/stromal cell heterogeneity in immunomodulatory profiles to improve cell-based therapies. Acta Biomater. 2021 133 114 125 10.1016/j.actbio.2021.03.069 33857693
    [Google Scholar]
  126. Murty T. Mackall C.L. Gene editing to enhance the efficacy of cancer cell therapies. Mol. Ther. 2021 29 11 3153 3162 10.1016/j.ymthe.2021.10.001 34673274
    [Google Scholar]
  127. Nguyen T.T. Shin D.H. Sohoni S. Singh S.K. Rivera-Molina Y. Jiang H. Fan X. Gumin J. Lang F.F. Alvarez-Breckenridge C. Godoy-Vitorino F. Zhu L. Zheng W.J. Zhai L. Ladomersky E. Lauing K.L. Alonso M.M. Wainwright D.A. Gomez-Manzano C. Fueyo J. Reshaping the tumor microenvironment with oncolytic viruses, positive regulation of the immune synapse, and blockade of the immunosuppressive oncometabolic circuitry. J. Immunother. Cancer 2022 10 7 e004935 10.1136/jitc‑2022‑004935 35902132
    [Google Scholar]
  128. Karimi-Shahri M. Javid H. Sharbaf Mashhad A. Yazdani S. Hashemy S.I. Mesenchymal stem cells in cancer therapy; the art of harnessing a foe to a friend. Iran. J. Basic Med. Sci. 2021 24 10 1307 1323 35096289
    [Google Scholar]
  129. Joshi S. Allabun S. Ojo S. Alqahtani M.S. Shukla P.K. Abbas M. Wechtaisong C. Almohiy H.M. Enhanced drug delivery system using mesenchymal stem cells and membrane-coated nanoparticles. Molecules 2023 28 5 2130 10.3390/molecules28052130 36903399
    [Google Scholar]
  130. Xiao R. Ding J. Chen J. Zhao Z. He L. Wang H. Huang S. Luo B. Citric acid coated ultrasmall superparamagnetic iron oxide nanoparticles conjugated with lactoferrin for targeted negative MR imaging of glioma. J. Biomater. Appl. 2021 36 1 15 25 10.1177/0885328220975570 33287646
    [Google Scholar]
  131. Wang Y. Ning Z. Zhou X. Yang Z. Tang H. Xu M. Wang X. Zhao J. Bai Y. Neuregulin1 acts as a suppressor in human lung adenocarcinoma via AKT and ERK1/2 pathway. J. Thorac. Dis. 2018 10 6 3166 3179 10.21037/jtd.2018.05.175 30069312
    [Google Scholar]
  132. Zhu B. Liu Q. Han Q. Zeng B. Chen J. Xiao Q. Downregulation of Krüppel‑like factor 1 inhibits the metastasis and invasion of cervical cancer cells. Mol. Med. Rep. 2018 18 4 3932 3940 30132534
    [Google Scholar]
  133. Chen Y. Liu Y. Zhou Y. You H. Molecular mechanism of LKB1 in the invasion and metastasis of colorectal cancer. Oncol. Rep. 2019 41 2 1035 1044 30483811
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X341525250116052000
Loading
/content/journals/cscr/10.2174/011574888X341525250116052000
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test