Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation-associated genes (HAGs) and liver cancer stem cells remain unclear.

Objective

To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients.

Methods

LIHC expression data were downloaded from the public databases. Using mRNA expression-based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High . mRNAsi-Low groups) were intersected with DEGs (LIHC . normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis.

Results

Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere.

Conclusion

This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X305642240327041753
2024-10-28
2025-01-22
Loading full text...

Full text loading...

References

  1. WenN. CaiY. LiF. YeH. TangW. SongP. ChengN. The clinical management of hepatocellular carcinoma worldwide: A concise review and comparison of current guidelines: 2022 update.Biosci. Trends2022161203010.5582/bst.2022.0106135197399
    [Google Scholar]
  2. LlovetJ.M. PinyolR. KelleyR.K. El-KhoueiryA. ReevesH.L. WangX.W. GoresG.J. VillanuevaA. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma.Nat. Can.20223438640110.1038/s43018‑022‑00357‑235484418
    [Google Scholar]
  3. CouriT. PillaiA. Goals and targets for personalized therapy for HCC.Hepatol. Int.201913212513710.1007/s12072‑018‑9919‑130600478
    [Google Scholar]
  4. TabrizianP. JibaraG. ShragerB. SchwartzM. RoayaieS. Recurrence of hepatocellular cancer after resection: Patterns, treatments, and prognosis.Ann. Surg.2015261594795510.1097/SLA.000000000000071025010665
    [Google Scholar]
  5. ZhangW. ZhangB. ChenX. Adjuvant treatment strategy after curative resection for hepatocellular carcinoma.Front. Med.202115215516910.1007/s11684‑021‑0848‑333754281
    [Google Scholar]
  6. IkedaM. MorizaneC. UenoM. OkusakaT. IshiiH. FuruseJ. Chemotherapy for hepatocellular carcinoma: Current status and future perspectives.Jpn. J. Clin. Oncol.201848210311410.1093/jjco/hyx18029253194
    [Google Scholar]
  7. DemirT. LeeS.S. KasebA.O. Systemic therapy of liver cancer.Adv. Cancer Res.202114925729410.1016/bs.acr.2020.12.00133579425
    [Google Scholar]
  8. LiuG. FanX. TangM. ChenR. WangH. JiaR. ZhouX. JingW. WangH. YangY. YinF. WeiH. LiB. ZhaoJ. Osteopontin induces autophagy to promote chemo-resistance in human hepatocellular carcinoma cells.Cancer Lett.2016383217118210.1016/j.canlet.2016.09.03327702661
    [Google Scholar]
  9. YangD. ZhangP. YangZ. HouG. YangZ. miR-4461 Inhibits Liver Cancer Stem Cells Expansion and Chemoresistance via Regulating SIRT1.Carcinogenesis202445746347410.1093/carcin/bgac09336437743
    [Google Scholar]
  10. Quiroz ReyesA.G. Lozano SepulvedaS.A. Martinez-AcuñaN. IslasJ.F. GonzalezP.D. Heredia TorresT.G. PerezJ.R. Garza TreviñoE.N. Cancer stem cell and hepatic stellate cells in hepatocellular carcinoma.Technol. Cancer Res. Treat.20232210.1177/1533033823116367736938618
    [Google Scholar]
  11. PlaksV. KongN. WerbZ. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells?Cell Stem Cell201516322523810.1016/j.stem.2015.02.01525748930
    [Google Scholar]
  12. BatlleE. CleversH. Cancer stem cells revisited.Nat. Med.201723101124113410.1038/nm.440928985214
    [Google Scholar]
  13. KresoA. DickJ.E. Evolution of the cancer stem cell model.Cell Stem Cell201414327529110.1016/j.stem.2014.02.00624607403
    [Google Scholar]
  14. LiuY.C. YehC.T. LinK.H. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies.Cells202096133110.3390/cells906133132466488
    [Google Scholar]
  15. LeeT.K.W. GuanX.Y. MaS. Cancer stem cells in hepatocellular carcinoma — from origin to clinical implications.Nat. Rev. Gastroenterol. Hepatol.2022191264410.1038/s41575‑021‑00508‑334504325
    [Google Scholar]
  16. LamK.H. MaS. Noncellular components in the liver cancer stem cell niche: Biology and potential clinical implications.Hepatology2023783991100510.1002/hep.3262935727189
    [Google Scholar]
  17. ZarębskaI. GzilA. DurślewiczJ. JaworskiD. AntosikP. AhmadiN. Smolińska-ŚwitałaM. GrzankaD. SzylbergŁ. The clinical, prognostic and therapeutic significance of liver cancer stem cells and their markers.Clin. Res. Hepatol. Gastroenterol.202145310166410.1016/j.clinre.2021.10166433667731
    [Google Scholar]
  18. ParkD.J. SungP.S. KimJ.H. LeeG.W. JangJ.W. JungE.S. BaeS.H. ChoiJ.Y. YoonS.K. EpCAM-high liver cancer stem cells resist natural killer cell–mediated cytotoxicity by upregulating CEACAM1.J. Immunother. Cancer202081e00030110.1136/jitc‑2019‑00030132221015
    [Google Scholar]
  19. WongM.M.T. ChanH.Y. AzizN.A. RamasamyT.S. BongJ.J. Ch’ngE.S. ArmonS. PehS.C. TeowS.Y. Interplay of autophagy and cancer stem cells in hepatocellular carcinoma.Mol. Biol. Rep.20214843695371710.1007/s11033‑021‑06334‑933893928
    [Google Scholar]
  20. FangX. YanQ. LiuS. GuanX.Y. Cancer stem cells in hepatocellular carcinoma: Intrinsic and extrinsic molecular mechanisms in stemness regulation.Int. J. Mol. Sci.202223201232710.3390/ijms23201232736293184
    [Google Scholar]
  21. GeffenY. AnandS. AkiyamaY. YaronT.M. SongY. JohnsonJ.L. GovindanA. BaburÖ. LiY. HuntsmanE. WangL.B. BirgerC. HeimanD.I. ZhangQ. MillerM. MaruvkaY.E. HaradhvalaN.J. CalinawanA. BelkinS. KerelskyA. ClauserK.R. KrugK. SatpathyS. PayneS.H. ManiD.R. GilletteM.A. DhanasekaranS.M. ThiagarajanM. MesriM. RodriguezH. RoblesA.I. CarrS.A. LazarA.J. AguetF. CantleyL.C. DingL. GetzG. AnE. AnuragM. BavarvaJ. BirrerM.J. BaburÖ. CaoS. CeccarelliM. ChanD.W. ChinnaiyanA.M. ChoH. ChowdhuryS. CieslikM.P. ColapricoA. CarrS.A. da Veiga LeprevostF. DayC. DomagalskiM.J. DouY. DrukerB.J. EdwardsN. EllisM.J. FenyoD. FoltzS.M. FrancisA. Gonzalez RoblesT.J. GoslineS.J.C. GümüşZ.H. HiltkeT. HongR. HostetterG. HuY. HuangC. IavaroneA. JaehnigE.J. JewelS.D. JiJ. JiangW. KatsnelsonL. KetchumK.A. KolodziejczakI. Kumar-SinhaC. KrugK. LeiJ.T. LiangW-W. LiaoY. LindgrenC.M. LiuT. LiuW. MaW. McKerrowW. MesriM. ManiD.R. NesvizhskiiA.I. NewtonC. OldroydR. OmennG.S. PaulovichA.G. PetraliaF. PuglieseP. RevaB. RodlandK.D. RugglesK.V. RykunovD. RodriguesF.M. SavageS.R. SchadtE.E. SchnaubeltM. SchrainkT. ShiZ. SmithR.D. SongX. StathiasV. StorrsE.P. SchürerS. SelvanM.E. TanJ. TerekhanovaN.V. ThanguduR.R. TignorN. ThiagarajanM. WangJ.M. WangP. WangY.C. WenB. WiznerowiczM. WuY. WyczalkowskiM.A. YaoL. YiX. YaoL. ZhangB. ZhangH. ZhangX. ZhangZ. ZhouD.C. Clinical Proteomic Tumor Analysis Consortium Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation.Cell20231861839453967.e2610.1016/j.cell.2023.07.01337582358
    [Google Scholar]
  22. WuZ. HuangR. YuanL. Crosstalk of intracellular post-translational modifications in cancer.Arch. Biochem. Biophys.201967610813810.1016/j.abb.2019.10813831606391
    [Google Scholar]
  23. ShenY. WeiW. ZhouD.X. Histone acetylation enzymes coordinate metabolism and gene expression.Trends Plant Sci.2015201061462110.1016/j.tplants.2015.07.00526440431
    [Google Scholar]
  24. AudiaJ.E. CampbellR.M. Histone modifications and cancer.Cold Spring Harb. Perspect. Biol.201684a01952110.1101/cshperspect.a01952127037415
    [Google Scholar]
  25. HagelkruysA. SawickaA. RennmayrM. SeiserC. The biology of HDAC in cancer: The nuclear and epigenetic components.Handb. Exp. Pharmacol.2011206133710.1007/978‑3‑642‑21631‑2_221879444
    [Google Scholar]
  26. BiL. RenY. FengM. MengP. WangQ. ChenW. JiaoQ. WangY. DuL. ZhouF. JiangY. ChenF. WangC. TangB. WangY. HDAC11 regulates glycolysis through the LKB1/AMPK signaling pathway to maintain hepatocellular carcinoma stemness.Cancer Res.20218182015202810.1158/0008‑5472.CAN‑20‑304433602787
    [Google Scholar]
  27. ZengS.S. YamashitaT. KondoM. NioK. HayashiT. HaraY. NomuraY. YoshidaM. HayashiT. OishiN. IkedaH. HondaM. KanekoS. The transcription factor SALL4 regulates stemness of EpCAM-positive hepatocellular carcinoma.J. Hepatol.201460112713410.1016/j.jhep.2013.08.02424012616
    [Google Scholar]
  28. MarquardtJ.U. Gomez-QuirozL. Arreguin CamachoL.O. PinnaF. LeeY.H. KitadeM. DomínguezM.P. CastvenD. BreuhahnK. ConnerE.A. GalleP.R. AndersenJ.B. FactorV.M. ThorgeirssonS.S. Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer.J. Hepatol.201563366166910.1016/j.jhep.2015.04.01825937435
    [Google Scholar]
  29. McClureJ.J. LiX. ChouC.J. Advances and challenges of HDAC inhibitors in cancer therapeutics.Adv. Cancer Res.201813818321110.1016/bs.acr.2018.02.00629551127
    [Google Scholar]
  30. ChunP. Histone deacetylase inhibitors in hematological malignancies and solid tumors.Arch. Pharm. Res.201538693394910.1007/s12272‑015‑0571‑125653088
    [Google Scholar]
  31. ShenC. LiM. DuanY. JiangX. HouX. XueF. ZhangY. LuoY. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma.Front. Immunol.202314117020710.3389/fimmu.2023.117020737304265
    [Google Scholar]
  32. TsilimigrasD.I. Ntanasis-StathopoulosI. MorisD. SpartalisE. PawlikT.M. Histone deacetylase inhibitors in hepatocellular carcinoma: A therapeutic perspective.Surg. Oncol.201827461161810.1016/j.suronc.2018.07.01530449480
    [Google Scholar]
  33. BayatS. Shekari KhanianiM. ChoupaniJ. AlivandM.R. Mansoori DerakhshanS. HDACis (class I), cancer stem cell, and phytochemicals: Cancer therapy and prevention implications.Biomed. Pharmacother.2018971445145310.1016/j.biopha.2017.11.06529156535
    [Google Scholar]
  34. TavassolyI. GoldfarbJ. IyengarR. Systems biology primer: The basic methods and approaches.Essays Biochem.201862448750010.1042/EBC2018000330287586
    [Google Scholar]
  35. MaltaT.M. SokolovA. GentlesA.J. BurzykowskiT. PoissonL. WeinsteinJ.N. KamińskaB. HuelskenJ. OmbergL. GevaertO. ColapricoA. CzerwińskaP. MazurekS. MishraL. HeynH. KrasnitzA. GodwinA.K. LazarA.J. StuartJ.M. HoadleyK.A. LairdP.W. NoushmehrH. WiznerowiczM. Caesar-JohnsonS.J. DemchokJ.A. FelauI. KasapiM. FergusonM.L. HutterC.M. SofiaH.J. TarnuzzerR. WangZ. YangL. ZenklusenJ.C. ZhangJ.J. ChudamaniS. LiuJ. LollaL. NareshR. PihlT. SunQ. WanY. WuY. ChoJ. DeFreitasT. FrazerS. GehlenborgN. GetzG. HeimanD.I. KimJ. LawrenceM.S. LinP. MeierS. NobleM.S. SaksenaG. VoetD. ZhangH. BernardB. ChambweN. DhankaniV. KnijnenburgT. KramerR. LeinonenK. LiuY. MillerM. ReynoldsS. ShmulevichI. ThorssonV. ZhangW. AkbaniR. BroomB.M. HegdeA.M. JuZ. KanchiR.S. KorkutA. LiJ. LiangH. LingS. LiuW. LuY. MillsG.B. NgK-S. RaoA. RyanM. WangJ. WeinsteinJ.N. ZhangJ. AbeshouseA. ArmeniaJ. ChakravartyD. ChatilaW.K. de BruijnI. GaoJ. GrossB.E. HeinsZ.J. KundraR. LaK. LadanyiM. LunaA. NissanM.G. OchoaA. PhillipsS.M. ReznikE. Sanchez-VegaF. SanderC. SchultzN. SheridanR. SumerS.O. SunY. TaylorB.S. WangJ. ZhangH. AnurP. PetoM. SpellmanP. BenzC. StuartJ.M. WongC.K. YauC. HayesD.N. ParkerJ.S. WilkersonM.D. AllyA. BalasundaramM. BowlbyR. BrooksD. CarlsenR. ChuahE. DhallaN. HoltR. JonesS.J.M. KasaianK. LeeD. MaY. MarraM.A. MayoM. MooreR.A. MungallA.J. MungallK. RobertsonA.G. SadeghiS. ScheinJ.E. SipahimalaniP. TamA. ThiessenN. TseK. WongT. BergerA.C. BeroukhimR. CherniackA.D. CibulskisC. GabrielS.B. GaoG.F. HaG. MeyersonM. SchumacherS.E. ShihJ. KucherlapatiM.H. KucherlapatiR.S. BaylinS. CopeL. DanilovaL. BootwallaM.S. LaiP.H. MaglinteD.T. Van Den BergD.J. WeisenbergerD.J. AumanJ.T. BaluS. BodenheimerT. FanC. HoadleyK.A. HoyleA.P. JefferysS.R. JonesC.D. MengS. MieczkowskiP.A. MoseL.E. PerouA.H. PerouC.M. RoachJ. ShiY. SimonsJ.V. SkellyT. SolowayM.G. TanD. VeluvoluU. FanH. HinoueT. LairdP.W. ShenH. ZhouW. BellairM. ChangK. CovingtonK. CreightonC.J. DinhH. DoddapaneniH.V. DonehowerL.A. DrummondJ. GibbsR.A. GlennR. HaleW. HanY. HuJ. KorchinaV. LeeS. LewisL. LiW. LiuX. MorganM. MortonD. MuznyD. SantibanezJ. ShethM. ShinbrotE. WangL. WangM. WheelerD.A. XiL. ZhaoF. HessJ. AppelbaumE.L. BaileyM. CordesM.G. DingL. FronickC.C. FultonL.A. FultonR.S. KandothC. MardisE.R. McLellanM.D. MillerC.A. SchmidtH.K. WilsonR.K. CrainD. CurleyE. GardnerJ. LauK. MalleryD. MorrisS. PaulauskisJ. PennyR. SheltonC. SheltonT. ShermanM. ThompsonE. YenaP. BowenJ. Gastier-FosterJ.M. GerkenM. LeraasK.M. LichtenbergT.M. RamirezN.C. WiseL. ZmudaE. CorcoranN. CostelloT. HovensC. CarvalhoA.L. de CarvalhoA.C. FregnaniJ.H. Longatto-FilhoA. ReisR.M. Scapulatempo-NetoC. SilveiraH.C.S. VidalD.O. BurnetteA. EschbacherJ. HermesB. NossA. SinghR. AndersonM.L. CastroP.D. IttmannM. HuntsmanD. KohlB. LeX. ThorpR. AndryC. DuffyE.R. LyadovV. PaklinaO. SetdikovaG. ShabuninA. TavobilovM. McPhersonC. WarnickR. BerkowitzR. CramerD. FeltmateC. HorowitzN. KibelA. MutoM. RautC.P. MalykhA. Barnholtz-SloanJ.S. BarrettW. DevineK. FulopJ. OstromQ.T. ShimmelK. WolinskyY. SloanA.E. De RoseA. GiulianteF. GoodmanM. KarlanB.Y. HagedornC.H. EckmanJ. HarrJ. MyersJ. TuckerK. ZachL.A. DeyarminB. HuH. KvecherL. LarsonC. MuralR.J. SomiariS. VichaA. ZelinkaT. BennettJ. IacoccaM. RabenoB. SwansonP. LatourM. LacombeL. TêtuB. BergeronA. McGrawM. StaugaitisS.M. ChabotJ. HibshooshH. SepulvedaA. SuT. WangT. PotapovaO. VoroninaO. DesjardinsL. MarianiO. Roman-RomanS. SastreX. SternM-H. ChengF. SignorettiS. BerchuckA. BignerD. LippE. MarksJ. McCallS. McLendonR. SecordA. SharpA. BeheraM. BratD.J. ChenA. DelmanK. ForceS. KhuriF. MaglioccaK. MaithelS. OlsonJ.J. OwonikokoT. PickensA. RamalingamS. ShinD.M. SicaG. Van MeirE.G. ZhangH. EijckenboomW. GillisA. KorpershoekE. LooijengaL. OosterhuisW. StoopH. van KesselK.E. ZwarthoffE.C. CalatozzoloC. CuppiniL. CuzzubboS. DiMecoF. FinocchiaroG. MatteiL. PerinA. PolloB. ChenC. HouckJ. LohavanichbutrP. HartmannA. StoehrC. StoehrR. TaubertH. WachS. WullichB. KyclerW. MurawaD. WiznerowiczM. ChungK. EdenfieldW.J. MartinJ. BaudinE. BubleyG. BuenoR. De RienzoA. RichardsW.G. KalkanisS. MikkelsenT. NoushmehrH. ScarpaceL. GirardN. AymerichM. CampoE. GinéE. GuillermoA.L. Van BangN. HanhP.T. PhuB.D. TangY. ColmanH. EvasonK. DottinoP.R. MartignettiJ.A. GabraH. JuhlH. AkeredoluT. StepaS. HoonD. AhnK. KangK.J. BeuschleinF. BreggiaA. BirrerM. BellD. BoradM. BryceA.H. CastleE. ChandanV. ChevilleJ. CoplandJ.A. FarnellM. FlotteT. GiamaN. HoT. KendrickM. KocherJ-P. KoppK. MoserC. NagorneyD. O’BrienD. O’NeillB.P. PatelT. PetersenG. QueF. RiveraM. RobertsL. SmallridgeR. SmyrkT. StantonM. ThompsonR.H. TorbensonM. YangJ.D. ZhangL. BrimoF. AjaniJ.A. GonzalezA.M.A. BehrensC. BondarukJ. BroaddusR. CzerniakB. EsmaeliB. FujimotoJ. GershenwaldJ. GuoC. LazarA.J. LogothetisC. Meric-BernstamF. MoranC. RamondettaL. RiceD. SoodA. TamboliP. ThompsonT. TroncosoP. TsaoA. WistubaI. CarterC. HayduL. HerseyP. JakrotV. KakavandH. KeffordR. LeeK. LongG. MannG. QuinnM. SawR. ScolyerR. ShannonK. SpillaneA. StretchJ. SynottM. ThompsonJ. WilmottJ. Al-AhmadieH. ChanT.A. GhosseinR. GopalanA. LevineD.A. ReuterV. SingerS. SinghB. TienN.V. BroudyT. MirsaidiC. NairP. DrwiegaP. MillerJ. SmithJ. ZarenH. ParkJ-W. HungN.P. KebebewE. LinehanW.M. MetwalliA.R. PacakK. PintoP.A. SchiffmanM. SchmidtL.S. VockeC.D. WentzensenN. WorrellR. YangH. MoncrieffM. GoparajuC. MelamedJ. PassH. BotnariucN. CaramanI. CernatM. ChemencedjiI. ClipcaA. DorucS. GorincioiG. MuraS. PirtacM. StanculI. TcaciucD. AlbertM. AlexopoulouI. ArnaoutA. BartlettJ. EngelJ. GilbertS. ParfittJ. SekhonH. ThomasG. RasslD.M. RintoulR.C. BifulcoC. TamakawaR. UrbaW. HaywardN. TimmersH. AntenucciA. FaccioloF. GraziG. MarinoM. MerolaR. de KrijgerR. Gimenez-RoqueploA-P. PichéA. ChevalierS. McKercherG. BirsoyK. BarnettG. BrewerC. FarverC. NaskaT. PennellN.A. RaymondD. SchileroC. SmolenskiK. WilliamsF. MorrisonC. BorgiaJ.A. LiptayM.J. PoolM. SederC.W. JunkerK. OmbergL. DinkinM. ManikhasG. AlvaroD. BragazziM.C. CardinaleV. CarpinoG. GaudioE. CheslaD. CottinghamS. DubinaM. MoiseenkoF. DhanasekaranR. BeckerK-F. JanssenK-P. Slotta-HuspeninaJ. Abdel-RahmanM.H. AzizD. BellS. CebullaC.M. DavisA. DuellR. ElderJ.B. HiltyJ. KumarB. LangJ. LehmanN.L. MandtR. NguyenP. PilarskiR. RaiK. SchoenfieldL. SenecalK. WakelyP. HansenP. LechanR. PowersJ. TischlerA. GrizzleW.E. SextonK.C. KastlA. HendersonJ. PortenS. WaldmannJ. FassnachtM. AsaS.L. SchadendorfD. CouceM. GraefenM. HulandH. SauterG. SchlommT. SimonR. TennstedtP. OlabodeO. NelsonM. BatheO. CarrollP.R. ChanJ.M. DisaiaP. GlennP. KelleyR.K. LandenC.N. PhillipsJ. PradosM. SimkoJ. Smith-McCuneK. VandenBergS. RogginK. FehrenbachA. KendlerA. SifriS. SteeleR. JimenoA. CareyF. ForgieI. MannelliM. CarneyM. HernandezB. CamposB. Herold-MendeC. JungkC. UnterbergA. von DeimlingA. BosslerA. GalbraithJ. JacobusL. KnudsonM. KnutsonT. MaD. MilhemM. SigmundR. GodwinA.K. MadanR. RosenthalH.G. AdebamowoC. AdebamowoS.N. BoussioutasA. BeerD. GiordanoT. Mes-MassonA-M. SaadF. BocklageT. LandrumL. MannelR. MooreK. MoxleyK. PostierR. WalkerJ. ZunaR. FeldmanM. ValdiviesoF. DhirR. LuketichJ. PineroE.M.M. Quintero-AguiloM. CarlottiC.G.Jr Dos SantosJ.S. KempR. SankarankutyA. TirapelliD. CattoJ. AgnewK. SwisherE. CreaneyJ. RobinsonB. ShelleyC.S. GodwinE.M. KendallS. ShipmanC. BradfordC. CareyT. HaddadA. MoyerJ. PetersonL. PrinceM. RozekL. WolfG. BowmanR. FongK.M. YangI. KorstR. RathmellW.K. Fantacone-CampbellJ.L. HookeJ.A. KovatichA.J. ShriverC.D. DiPersioJ. DrakeB. GovindanR. HeathS. LeyT. Van TineB. WesterveltP. RubinM.A. LeeJ.I. AredesN.D. MariamidzeA. Cancer Genome Atlas Research Network Machine learning identifies stemness features associated with oncogenic dedifferentiation.Cell20181732338354.e1510.1016/j.cell.2018.03.03429625051
    [Google Scholar]
  36. XuY. LiaoW. LuoQ. YangD. PanM. Histone acetylation regulator-mediated acetylation patterns define tumor malignant pathways and tumor microenvironment in hepatocellular carcinoma.Front. Immunol.20221376104610.3389/fimmu.2022.76104635145517
    [Google Scholar]
  37. ZhangY. TsengJ.T.C. LienI.C. LiF. WuW. LiH. mRNAsi index: Machine learning in mining lung adenocarcinoma stem cell biomarkers.Genes (Basel)202011325710.3390/genes1103025732121037
    [Google Scholar]
  38. JordáE.G. Survival.Clin. Transl. Oncol.20111313410.1007/s12094‑011‑0609‑x21239348
    [Google Scholar]
  39. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv00725605792
    [Google Scholar]
  40. ChenH. BoutrosP.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R.BMC Bioinformatics20111213510.1186/1471‑2105‑12‑3521269502
    [Google Scholar]
  41. YuG. WangL.G. HanY. HeQ.Y. clusterProfiler: An R package for comparing biological themes among gene clusters.OMICS201216528428710.1089/omi.2011.011822455463
    [Google Scholar]
  42. YangL. QuQ. HaoZ. ShaK. LiZ. LiS. Powerful identification of large quantitative trait loci using genome-wide r/glmnet-based regression.J. Hered.2022113447247810.1093/jhered/esac00635134967
    [Google Scholar]
  43. SturmG. FinotelloF. ListM. Immunedeconv: An R package for unified access to computational methods for estimating immune cell fractions from bulk rna-sequencing data.Methods Mol. Biol.2020212022323210.1007/978‑1‑0716‑0327‑7_1632124323
    [Google Scholar]
  44. GeeleherP. CoxN. HuangR.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.PLoS One201499e10746810.1371/journal.pone.010746825229481
    [Google Scholar]
  45. SukowatiC.H.C. Heterogeneity of hepatic cancer stem cells.Adv. Exp. Med. Biol.20191139598110.1007/978‑3‑030‑14366‑4_431134495
    [Google Scholar]
  46. MukherjeeN. LambertK.A. NorrisD.A. ShellmanY.G. Enrichment of melanoma stem-like cells via sphere assays.Methods Mol. Biol.2021226518519910.1007/978‑1‑0716‑1205‑7_1433704715
    [Google Scholar]
  47. VogelA. MeyerT. SapisochinG. SalemR. SaborowskiA. Hepatocellular carcinoma.Lancet2022400103601345136210.1016/S0140‑6736(22)01200‑436084663
    [Google Scholar]
  48. DaiX. GuoY. HuY. BaoX. ZhuX. FuQ. ZhangH. TongZ. LiuL. ZhengY. ZhaoP. FangW. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma.Theranostics20211173489350110.7150/thno.5464833537099
    [Google Scholar]
  49. WangJ. YuH. DongW. ZhangC. HuM. MaW. JiangX. LiH. YangP. XiangD. N6-methyladenosine–mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and lenvatinib resistance through WNT/β-catenin and hippo signaling pathways.Gastroenterology20231646990100510.1053/j.gastro.2023.01.04136764493
    [Google Scholar]
  50. PanL. FengF. WuJ. FanS. HanJ. WangS. YangL. LiuW. WangC. XuK. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells.Pharmacol. Res.202218110627010.1016/j.phrs.2022.10627035605812
    [Google Scholar]
  51. YangL. ShiP. ZhaoG. XuJ. PengW. ZhangJ. ZhangG. WangX. DongZ. ChenF. CuiH. Targeting cancer stem cell pathways for cancer therapy.Signal Transduct. Target. Ther.202051810.1038/s41392‑020‑0110‑532296030
    [Google Scholar]
  52. DangF. WeiW. Targeting the acetylation signaling pathway in cancer therapy.Semin. Cancer Biol.20228520921810.1016/j.semcancer.2021.03.00133705871
    [Google Scholar]
  53. SunL. ZhangJ. WenK. HuangS. LiD. XuY. WuJ. The prognostic value of lysine acetylation regulators in hepatocellular carcinoma.Front. Mol. Biosci.2022984041210.3389/fmolb.2022.84041235355509
    [Google Scholar]
  54. ShvedunovaM. AkhtarA. Modulation of cellular processes by histone and non-histone protein acetylation.Nat. Rev. Mol. Cell Biol.202223532934910.1038/s41580‑021‑00441‑y35042977
    [Google Scholar]
  55. JinX. TianS. LiP. Histone acetyltransferase 1 promotes cell proliferation and induces cisplatin resistance in hepatocellular carcinoma.Oncol. Res.201725693994610.3727/096504016X1480982785652427938492
    [Google Scholar]
  56. HanN. ShiL. GuoQ. SunW. YuY. YangL. ZhangX. ZhangM. HAT1 induces lung cancer cell apoptosis via up regulating Fas.Oncotarget2017852899708997710.18632/oncotarget.2120529163803
    [Google Scholar]
  57. FanP. ZhaoJ. MengZ. WuH. WangB. WuH. JinX. Overexpressed histone acetyltransferase 1 regulates cancer immunity by increasing programmed death-ligand 1 expression in pancreatic cancer.J. Exp. Clin. Cancer Res.20193814710.1186/s13046‑019‑1044‑z30709380
    [Google Scholar]
  58. PozielloA. NebbiosoA. StunnenbergH.G. MartensJ.H.A. CarafaV. AltucciL. Recent insights into Histone Acetyltransferase-1 : Biological function and involvement in pathogenesis.Epigenetics202116883885010.1080/15592294.2020.182772333016232
    [Google Scholar]
  59. KumarN. MondalM. ArathiB.P. SundaresanN.R. SomasundaramK. Histone acetyltransferase 1 (HAT1) acetylates hypoxia-inducible factor 2 alpha (HIF2A) to execute hypoxia response.Biochim. Biophys. Acta. Gene Regul. Mech.20231866119490010.1016/j.bbagrm.2022.19490036410688
    [Google Scholar]
  60. AlshehriB. Expression patterns and therapeutic implications of histone deacetylase-1 across carcinomas: A comprehensive molecular docking and MD simulation study.Med. Oncol.2022391220910.1007/s12032‑022‑01811‑y36175584
    [Google Scholar]
  61. RikimaruT. TaketomiA. YamashitaY. ShirabeK. HamatsuT. ShimadaM. MaeharaY. Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma.Oncology2007721-2697410.1159/00011110618004079
    [Google Scholar]
  62. WittA.E. LeeC-W. LeeT.I. AzzamD.J. WangB. CasliniC. PetroccaF. GrossoJ. JonesM. CohickE.B. GropperA.B. WahlestedtC. RichardsonA.L. ShiekhattarR. YoungR.A. InceT.A. Identification of a cancer stem cell-specific function for the histone deacetylases, HDAC1 and HDAC7, in breast and ovarian cancer.Oncogene201736121707172010.1038/onc.2016.33727694895
    [Google Scholar]
  63. LiuS.S. WuF. JinY.M. ChangW.Q. XuT.M. HDAC11: A rising star in epigenetics.Biomed. Pharmacother.202013111060710.1016/j.biopha.2020.11060732841898
    [Google Scholar]
  64. IshiguroT. OhataH. SatoA. YamawakiK. EnomotoT. OkamotoK. Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications.Cancer Sci.2017108328328910.1111/cas.1315528064442
    [Google Scholar]
  65. BayikD. LathiaJ.D. Cancer stem cell–immune cell crosstalk in tumour progression.Nat. Rev. Cancer202121852653610.1038/s41568‑021‑00366‑w34103704
    [Google Scholar]
  66. SuR. DongL. LiY. GaoM. HanL. WunderlichM. DengX. LiH. HuangY. GaoL. LiC. ZhaoZ. RobinsonS. TanB. QingY. QinX. PrinceE. XieJ. QinH. LiW. ShenC. SunJ. KulkarniP. WengH. HuangH. ChenZ. ZhangB. WuX. OlsenM.J. MüschenM. MarcucciG. SalgiaR. LiL. FathiA.T. LiZ. MulloyJ.C. WeiM. HorneD. ChenJ. Targeting FTO suppresses cancer stem cell maintenance and immune evasion.Cancer Cell20203817996.e1110.1016/j.ccell.2020.04.01732531268
    [Google Scholar]
  67. JinM.L. JeongK.W. Histone modifications in drug-resistant cancers: From a cancer stem cell and immune evasion perspective.Exp. Mol. Med.20235571333134710.1038/s12276‑023‑01014‑z37394580
    [Google Scholar]
  68. TsuchiyaH. ShiotaG. Immune evasion by cancer stem cells.Regen. Ther.202117203310.1016/j.reth.2021.02.00633778133
    [Google Scholar]
  69. WuK. LinK. LiX. YuanX. XuP. NiP. XuD. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment.Front. Immunol.202011173110.3389/fimmu.2020.0173132849616
    [Google Scholar]
  70. MaoX. XuJ. WangW. LiangC. HuaJ. LiuJ. ZhangB. MengQ. YuX. ShiS. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives.Mol. Cancer202120113110.1186/s12943‑021‑01428‑134635121
    [Google Scholar]
  71. GuerrieroJ.L. SotayoA. PonichteraH.E. CastrillonJ.A. PourziaA.L. SchadS. JohnsonS.F. CarrascoR.D. LazoS. BronsonR.T. DavisS.P. LoberaM. NolanM.A. LetaiA. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages.Nature2017543764542843210.1038/nature2140928273064
    [Google Scholar]
  72. KimD.J. DunleaveyJ.M. XiaoL. OllilaD.W. TroesterM.A. OteyC.A. LiW. BarkerT.H. DudleyA.C. Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition.Br. J. Cancer2018118101359136810.1038/s41416‑018‑0072‑329695769
    [Google Scholar]
  73. WuY. ZhangJ. LiQ. Autophagy, an accomplice or antagonist of drug resistance in HCC?Cell Death Dis.202112326610.1038/s41419‑021‑03553‑733712559
    [Google Scholar]
  74. LaddA.D. DuarteS. SahinI. ZarrinparA. Mechanisms of drug resistance in HCC.Hepatology202479492694010.1097/HEP.000000000000023736680397
    [Google Scholar]
  75. YamadaR. BassacoB. BracewellS. GillenK. KocherM. CollinsH. AndersonM.B. GuimaraesM. Long-term follow-up after conventional transarterial chemoembolization (c-TACE) with mitomycin for hepatocellular carcinoma (HCC).J. Gastrointest. Oncol.201910234835310.21037/jgo.2019.01.0131032104
    [Google Scholar]
  76. Gruber-RouhT. KamalA. EichlerK. NaguibN.N. BeeresM. LangenbachM. VoglT.J. Transarterial chemoembolization (TACE) using mitomycin with or without irinotecan for hepatocellular carcinoma in european patients.Oncol. Res. Treat.2018417-843844210.1159/00048864430007958
    [Google Scholar]
  77. FuJ. WangY. ZhangJ. YuanK. YanJ. YuanB. GuanY. WangM. The safety and efficacy of transarterial chemoembolisation with bleomycin for hepatocellular carcinoma unresponsive to doxorubicin: A prospective single-centre study.Clin. Radiol.20217611864.e7864.e1210.1016/j.crad.2021.07.01334452734
    [Google Scholar]
  78. SuraweeraA. O’ByrneK.J. RichardD.J. Combination therapy with histone deacetylase inhibitors (HDACi) for the treatment of cancer: Achieving the full therapeutic potential of hdaci.Front. Oncol.201889210.3389/fonc.2018.0009229651407
    [Google Scholar]
  79. ShaoH. GaoC. TangH. ZhangH. RobertsL.R. HylanderB.L. RepaskyE.A. MaW.W. QiuJ. AdjeiA.A. DyG.K. YuC. Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti- tumor efficacy in primary HCC cancer in vitro and in vivo.J. Hepatol.201256117618310.1016/j.jhep.2011.07.01321835141
    [Google Scholar]
  80. KularatneR.N. WashingtonK.E. BulumullaC. CalubaquibE.L. BiewerM.C. OupickyD. StefanM.C. Histone deacetylase inhibitor (HDACi) conjugated polycaprolactone for combination cancer therapy.Biomacromolecules20181931082108910.1021/acs.biomac.8b0022129485283
    [Google Scholar]
  81. DiyabalanageH.V.K. GrandaM.L. HookerJ.M. Combination therapy: Histone deacetylase inhibitors and platinum-based chemotherapeutics for cancer.Cancer Lett.201332911810.1016/j.canlet.2012.09.01823032720
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X305642240327041753
Loading
/content/journals/cscr/10.2174/011574888X305642240327041753
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test