Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Background

Osteoporosis increases bone brittleness and the risk of fracture. Umbilical cord mesenchymal stem cell (UCMSC) treatment is effective, but how to improve the biological activity and clinical efficacy of UCMSCs has not been determined.

Methods

A rat model of osteoporosis was induced with dexamethasone sodium phosphate. Highly active umbilical cord mesenchymal stem cells (HA-UCMSCs) and UCMSCs were isolated, cultured, identified, and infused intravenously once at a dose of 2.29 × 106 cells/kg. In the 4th week of treatment, bone mineral density (BMD) was evaluated cross-micro-CT, tibial structure was observed HE staining, osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was examined alizarin red staining, and carboxy-terminal cross-linked telopeptide (CTX), nuclear factor-κβ ligand (RANKL), procollagen type 1 N-terminal propeptide (PINP) and osteoprotegerin (OPG) levels were investigated enzyme-linked immunosorbent assays (ELISAs). BMMSCs were treated with 10-6 mol/L dexamethasone and cocultured with HA-UCMSCs and UCMSCs in transwells. The osteogenic and adipogenic differentiation of BMMSCs was subsequently examined through directional induction culture. The protein expression levels of WNT, β-catenin, RUNX2, IFN-γ and IL-17 in the bone tissue were measured Western blotting.

Results

The BMD in the healthy group was higher than that in the model group. Both UCMSCs and HA-UCMSCs exhibited a fusiform morphology; swirling growth; high expression of CD73, CD90 and CD105; and low expression of CD34 and CD45 and could differentiate into adipocytes, osteoblasts and chondrocytes, while HA-UCMSCs were smaller in size; had a higher nuclear percentage; and higher differentiation efficiency. Compared with those in the model group, the BMD increased, the bone structure improved, the trabecular area, number, and perimeter increased, the osteogenic differentiation of BMMSCs increased, RANKL expression decreased, and PINP expression increased after UCMSC and HA-UCMSC treatment for 4 weeks. Furthermore, the BMD, trabecular area, number and perimeter, calcareous nodule counts, and OPG/RANKL ratio were higher in the HA-UCMSC treatment group than in the UCMSC treatment group. The osteogenic and adipogenic differentiation of dexamethasone-treated BMMSCs was enhanced after the coculture of UCMSCs and HA-UCMSCs, and the HA-UCMSC group exhibited better effects than the UCMSC coculture group. The protein expression of WNT, β-catenin, and runx2 was upregulated, and IFN-γ and IL-17 expression was downregulated after UCMSC and HA-UCMSC treatment.

Conclusion

HA-UCMSCs have a stronger therapeutic effect on osteoporosis compared with that of UCMSCs. These effects include an improved bone structure, increased BMD, an increased number and perimeter of trabeculae, and enhanced osteogenic differentiation of BMMSCs activation of the WNT/β-catenin pathway and inhibition of inflammation.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X284911240131100909
2024-02-14
2025-01-22
Loading full text...

Full text loading...

References

  1. LiuP. WangW. LiZ. LiY. YuX. TuJ. ZhangZ. Ferroptosis: A new regulatory mechanism in osteoporosis.Oxid. Med. Cell. Longev.2022202211010.1155/2022/263443135082963
    [Google Scholar]
  2. GopinathV. Osteoporosis.Med. Clin. North Am.202310721322510.1016/j.mcna.2022.10.01336759092
    [Google Scholar]
  3. WilliamsC SapraA. Osteoporosis markers.StatPearlsStatPearls PublishingTreasure Island (FL)2023
    [Google Scholar]
  4. TengZ. ZhuY. LinD. HaoQ. YueQ. YuX. SunS. JiangL. LuS. Deciphering the chromatin spatial organization landscapes during BMMSC differentiation.J. Genet. Genomics202350426427510.1016/j.jgg.2023.01.00936720443
    [Google Scholar]
  5. LiuJ. YouY. SunZ. ZhangL. LiX. DaiZ. MaJ. ChenY. JiaoG. WTAP-mediated m6A RNA methylation regulates the differentiation of bone marrow mesenchymal stem cells via the miR-29b-3p/HDAC4 axis.Stem Cells Transl. Med.202312530732110.1093/stcltm/szad02037010483
    [Google Scholar]
  6. LiY. HuM. XieJ. LiS. DaiL. Dysregulation of histone modifications in bone marrow mesenchymal stem cells during skeletal ageing: Roles and therapeutic prospects.Stem Cell Res. Ther.202314116610.1186/s13287‑023‑03393‑637357311
    [Google Scholar]
  7. ZhangL. ZhengY.L. WangR. WangX.Q. ZhangH. Exercise for osteoporosis: A literature review of pathology and mechanism.Front. Immunol.202213100566510.3389/fimmu.2022.100566536164342
    [Google Scholar]
  8. MaJ. ChenP. WangR. G-protein-coupled receptor 124 promotes osteogenic differentiation of BMSCs through the Wnt/β-catenin pathway. In Vitro Cell. Dev. Biol. Anim.202258752953810.1007/s11626‑022‑00684‑935916978
    [Google Scholar]
  9. MoC. KeJ. ZhaoD. ZhangB. Role of the renin–angiotensin–aldosterone system in bone metabolism.J. Bone Miner. Metab.202038677277910.1007/s00774‑020‑01132‑y32734523
    [Google Scholar]
  10. BiverE. HerrouJ. LaridG. LegrandM.A. GonnelliS. AnnweilerC. ChapurlatR. CoxamV. FardelloneP. ThomasT. LecerfJ.M. CortetB. PaccouJ. Dietary recommendations in the prevention and treatment of osteoporosis.Joint Bone Spine202390310552110.1016/j.jbspin.2022.10552136566976
    [Google Scholar]
  11. FleetJ.C. Vitamin D-mediated regulation of intestinal calcium absorption.Nutrients20221416335110.3390/nu1416335136014856
    [Google Scholar]
  12. GossetA. PouillèsJ.M. TrémollieresF. Menopausal hormone therapy for the management of osteoporosis.Best Pract. Res. Clin. Endocrinol. Metab.202135610155110.1016/j.beem.2021.10155134119418
    [Google Scholar]
  13. LeBoffM.S. GreenspanS.L. InsognaK.L. LewieckiE.M. SaagK.G. SingerA.J. SirisE.S. The clinician’s guide to prevention and treatment of osteoporosis.Osteoporos. Int.202233102049210210.1007/s00198‑021‑05900‑y35478046
    [Google Scholar]
  14. SuhB. YuH. KimH. LeeS. KongS. KimJ.W. ChoiJ. Interpretable deep-learning approaches for osteoporosis risk screening and individualized feature analysis using large population-based data: Model development and performance evaluation.J. Med. Internet Res.202325e4017910.2196/4017936482780
    [Google Scholar]
  15. MeiJ. HuH. DingH. HuangY. ZhangW. ChenX. FangX. Investigating the causal relationship between ankylosing spondylitis and osteoporosis in the European population: A bidirectional mendelian randomization study.Front. Immunol.202314116325810.3389/fimmu.2023.116325837359532
    [Google Scholar]
  16. TianL. LuoC. LiY.F. WangQ.Y. QuX.L. YueC. XuL.L. YangY.Y. ShengZ.F. Economic evaluation of four treatment strategies for postmenopausal patients with osteoporosis and a recent fracture in mainland China: A cost-effectiveness analysis.Arch. Osteoporos.202318110010.1007/s11657‑023‑01309‑837460858
    [Google Scholar]
  17. YehE.J. GitlinM. SorioF. McCloskeyE. Estimating the future clinical and economic benefits of improving osteoporosis diagnosis and treatment among postmenopausal women across eight European countries.Arch. Osteoporos.20231816810.1007/s11657‑023‑01230‑037191892
    [Google Scholar]
  18. HoangD.M. PhamP.T. BachT.Q. NgoA.T.L. NguyenQ.T. PhanT.T.K. NguyenG.H. LeP.T.T. HoangV.T. ForsythN.R. HekeM. NguyenL.T. Stem cell-based therapy for human diseases.Signal Transduct. Target. Ther.20227127210.1038/s41392‑022‑01134‑435933430
    [Google Scholar]
  19. DaoT.T.T. NguyenC.T.H. VuN.B. LeH.T.N. NguyenP.D.N. Van PhamP. Evaluation of proliferation and osteogenic differentiation of human umbilical cord-derived mesenchymal stem cells in porous scaffolds.Adv. Exp. Med. Biol.2019108420722010.1007/5584_2019_34331214911
    [Google Scholar]
  20. LuY. ZhangW. TianZ. LiangQ. LiuC. WuY. ZhangL. RongL. The optimal transplantation strategy of umbilical cord mesenchymal stem cells in spinal cord injury: A systematic review and network meta-analysis based on animal studies.Stem Cell Res. Ther.202213144110.1186/s13287‑022‑03103‑836056386
    [Google Scholar]
  21. ZhaoX. FuL. ZouH. HeY. PanY. YeL. HuangY. FanW. ZhangJ. MaY. ChenJ. ZhuM. ZhangC. CaiY. MouX. Optogenetic engineered umbilical cord MSC-derived exosomes for remodeling of the immune microenvironment in diabetic wounds and the promotion of tissue repair.J. Nanobiotechnology202321117610.1186/s12951‑023‑01886‑337269014
    [Google Scholar]
  22. WangY. JingL. LeiX. MaZ. LiB. ShiY. ZhangW. LiY. ZhouH. HuK. XueY. JinY. Umbilical cord mesenchymal stem cell-derived apoptotic extracellular vesicles ameliorate cutaneous wound healing in type 2 diabetic mice via macrophage pyroptosis inhibition.Stem Cell Res. Ther.202314125710.1186/s13287‑023‑03490‑637726853
    [Google Scholar]
  23. ZhangS. NiW. High systemic immune-inflammation index is relevant to osteoporosis among middle-aged and older people: A cross-sectional study.Immun. Inflamm. Dis.2023118e99210.1002/iid3.99237647432
    [Google Scholar]
  24. JiangY. LiS. ZhouQ. LiuS. LiuX. XiaoJ. JiangW. XuY. KongD. WangF. WeiF. ZhengC. PDCD4 negatively regulated osteogenic differentiation and bone defect repair of mesenchymal stem cells through GSK-3β/β-Catenin pathway.Stem Cells Dev.2021301680681510.1089/scd.2021.004134088227
    [Google Scholar]
  25. LiuA. ChenJ. ZhangJ. ZhangC. ZhouQ. NiuP. YuanY. Intra-articular injection of umbilical cord mesenchymal stem cells loaded with graphene oxide granular lubrication ameliorates inflammatory responses and osteoporosis of the subchondral bone in rabbits of modified papain-induced osteoarthritis.Front. Endocrinol.20221282229410.3389/fendo.2021.82229435095776
    [Google Scholar]
  26. LiuC. ZhangH. TangX. FengR. YaoG. ChenW. LiW. LiangJ. FengX. SunL. Mesenchymal stem cells promote the osteogenesis in collagen-induced arthritic mice through the inhibition of TNF- α.Stem Cells Int.2018201811010.1155/2018/406903229853911
    [Google Scholar]
  27. XuY. JiangY. XiaC. WangY. ZhaoZ. LiT. Stem cell therapy for osteonecrosis of femoral head: Opportunities and challenges.Regen. Ther.20201529530410.1016/j.reth.2020.11.00333426232
    [Google Scholar]
  28. ColicchiaM. JonesD.A. BeirneA.M. HussainM. WeeramanD. RathodK. VeerapenJ. LowdellM. MathurA. Umbilical cord–derived mesenchymal stromal cells in cardiovascular disease: Review of preclinical and clinical data.Cytotherapy201921101007101810.1016/j.jcyt.2019.04.05631540804
    [Google Scholar]
  29. ZhangS. WangJ.Y. LiB. YinF. LiuH. Single-cell transcriptome analysis of uncultured human umbilical cord mesenchymal stem cells.Stem Cell Res. Ther.20211212510.1186/s13287‑020‑02055‑133413643
    [Google Scholar]
  30. ZhangL. SunY. ZhangX.X. LiuY.B. SunH.Y. WuC.T. XiaoF.J. WangL.S. Comparison of CD146 +/− mesenchymal stem cells in improving premature ovarian failure.Stem Cell Res. Ther.202213126710.1186/s13287‑022‑02916‑x35729643
    [Google Scholar]
  31. ZhangY. ZhouL. FuQ. LiuZ. ANKRD1 activates the Wnt signaling pathway by modulating CAV3 expression and thus promotes BMSC osteogenic differentiation and bone formation in ovariectomized mice.Biochim. Biophys. Acta Mol. Basis Dis.20231869516669310.1016/j.bbadis.2023.16669336958710
    [Google Scholar]
  32. WangB. XuN. CaoL. YuX. WangS. LiuQ. WangY. XuH. CaoY. miR-31 from mesenchymal stem cell-derived extracellular vesicles alleviates intervertebral disc degeneration by inhibiting NFAT5 and upregulating the Wnt/β-catenin pathway.Stem Cells Int.2022202211610.1155/2022/216405736311041
    [Google Scholar]
  33. ZuoR. LiuM. WangY. LiJ. WangW. WuJ. SunC. LiB. WangZ. LanW. ZhangC. ShiC. ZhouY. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling.Stem Cell Res. Ther.20191013010.1186/s13287‑018‑1121‑930646958
    [Google Scholar]
  34. HuangX. ChenW. GuC. LiuH. HouM. QinW. ZhuX. ChenX. LiuT. YangH. HeF. Melatonin suppresses bone marrow adiposity in ovariectomized rats by rescuing the imbalance between osteogenesis and adipogenesis through SIRT1 activation.J. Orthop. Translat.202338849710.1016/j.jot.2022.10.00236381247
    [Google Scholar]
  35. LiuC. LiuA.S. ZhongD. WangC.G. YuM. ZhangH.W. XiaoH. LiuJ.H. ZhangJ. YinK. Circular RNA AFF4 modulates osteogenic differentiation in BM-MSCs by activating SMAD1/5 pathway through miR-135a-5p/FNDC5/Irisin axis.Cell Death Dis.202112763110.1038/s41419‑021‑03877‑434145212
    [Google Scholar]
  36. GuoD.B. ZhuX.Q. LiQ.Q. LiuG.M.Y. RuanG.P. PangR.Q. ChenY.H. WangQ. WangJ.X. LiuJ.F. ChenQ. PanX.H. Efficacy and mechanisms underlying the effects of allogeneic umbilical cord mesenchymal stem cell transplantation on acute radiation injury in tree shrews.Cytotechnology20187051447146810.1007/s10616‑018‑0239‑z30066056
    [Google Scholar]
  37. HeJ. YaoX. MoP. WangK. YangZ. TianN. ZhuX. ZhaoJ. PangR. RuanG. PanX. Lack of tumorigenesis and protumorigenic activity of human umbilical cord mesenchymal stem cells in NOD SCID mice.BMC Cancer202222130710.1186/s12885‑022‑09431‑535317758
    [Google Scholar]
  38. RuanG. YaoX. MoP. WangK. YangZ. TianN. Liu-GaoM. WangJ. CaiX. LiZ. PangR. PanX. Establishment of a systemic inflammatory response syndrome model and evaluation of the efficacy of umbilical cord mesenchymal stem cell transplantation.Cells Tissues Organs2021210211813410.1159/00051461934182545
    [Google Scholar]
  39. LiF. ZhouC. XuL. TaoS. ZhaoJ. GuQ. Effect of stem cell therapy on bone mineral density: A meta-analysis of preclinical studies in animal models of osteoporosis.PLoS One2016112e014940010.1371/journal.pone.014940026882451
    [Google Scholar]
  40. KabatM. BobkovI. KumarS. GrumetM. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range?Stem Cells Transl. Med.202091172710.1002/sctm.19‑020231804767
    [Google Scholar]
  41. YangY. LiY. WangY. RuanG. TianC. WangQ. HeH. ZhuG. FangD. WangM. ZhuX. PanX. The effects of BMMSC treatment on lung tissue degeneration in elderly macaques.Stem Cell Res. Ther.202112115610.1186/s13287‑021‑02201‑333648583
    [Google Scholar]
  42. PanX.H. YangX.Y. YaoX. SunX.M. ZhuL. WangJ.X. PangR.Q. CaiX.M. DaiJ.J. RuanG.P. Bone-marrow mesenchymal stem cell transplantation to treat diabetic nephropathy in tree shrews.Cell Biochem. Funct.201432545346310.1002/cbf.303724867093
    [Google Scholar]
  43. DaiX. HengB.C. BaiY. YouF. SunX. LiY. TangZ. XuM. ZhangX. DengX. Restoration of electrical microenvironment enhances bone regeneration under diabetic conditions by modulating macrophage polarization.Bioact. Mater.2021672029203810.1016/j.bioactmat.2020.12.02033474514
    [Google Scholar]
  44. EkeukuS.O. Mohd RamliE.S. Abdullah SaniN. Abd GhafarN. SoelaimanI.N. ChinK.Y. Tocotrienol as a protecting agent against glucocorticoid-induced osteoporosis: A mini review of potential mechanisms.Molecules20222718586210.3390/molecules2718586236144598
    [Google Scholar]
  45. JiangY. ZhangP. ZhangX. LvL. ZhouY. Advances in mesenchymal stem cell transplantation for the treatment of osteoporosis.Cell Prolif.2021541e1295610.1111/cpr.1295633210341
    [Google Scholar]
  46. YahaoG. XinjiaW. The role and mechanism of exosomes from umbilical cord mesenchymal stem cells in inducing osteogenesis and preventing osteoporosis.Cell Transplant.202130: 9636897211057465.10.1177/0963689721105746534814742
    [Google Scholar]
  47. LiM. YangN. HaoL. ZhouW. LiL. LiuL. YangF. XuL. YaoG. ZhuC. XuW. FangS. Melatonin inhibits the ferroptosis pathway in rat bone marrow mesenchymal stem cells by activating the PI3K/AKT/mTOR signaling axis to attenuate steroid-induced osteoporosis.Oxid. Med. Cell. Longev.2022202212210.1155/2022/822373736035224
    [Google Scholar]
  48. LiuY. ChenY. LiX.H. CaoC. ZhangH.X. ZhouC. ChenY. GongY. YangJ.X. ChengL. ChenX.D. ShenH. XiaoH.M. TanL.J. DengH.W. Dissection of cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells in osteoarthritis at single-cell resolution.Int. J. Stem Cells202316334235510.15283/ijsc2210137105556
    [Google Scholar]
  49. Gholami FarashahM.S. JavadiM. MohammadiA. Soleimani RadJ. ShakouriS.K. RoshangarL. Bone marrow mesenchymal stem cell’s exosomes as key nanoparticles in osteogenesis and bone regeneration: Specific capacity based on cell type.Mol. Biol. Rep.20224912122031221810.1007/s11033‑022‑07807‑136224447
    [Google Scholar]
  50. WangZ. LiX. YangJ. GongY. ZhangH. QiuX. LiuY. ZhouC. ChenY. GreenbaumJ. ChengL. HuY. XieJ. YangX. LiY. SchillerM.R. ChenY. TanL. TangS.Y. ShenH. XiaoH.M. DengH.W. Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells.Int. J. Biol. Sci.202117154192420610.7150/ijbs.6195034803492
    [Google Scholar]
  51. McDaniels-DavidsonC.R. Kritz-SilversteinD. HuangM.H. LaughlinG.A. JohnsonS. HaapalahtiJ. SchneiderD.L. Barrett-ConnorE. KadoD.M. The association between bone turnover markers and kyphosis in community-dwelling older adults.Bone Rep.20165576110.1016/j.bonr.2016.04.00127868084
    [Google Scholar]
  52. SøllingA.S. HarsløfT. JørgensenN.R. LangdahlB. Changes in RANKL and TRAcP 5b after discontinuation of denosumab suggest RANKL mediated formation of osteoclasts results in the increased bone resorption.Osteoporos. Int.202334359960510.1007/s00198‑022‑06651‑036543965
    [Google Scholar]
  53. EastellR. SzulcP. Use of bone turnover markers in postmenopausal osteoporosis.Lancet Diabetes Endocrinol.201751190892310.1016/S2213‑8587(17)30184‑528689768
    [Google Scholar]
  54. DiemarS.S. DahlS.S. WestA.S. SimonsenS.A. IversenH.K. JørgensenN.R. A systematic review of the circadian rhythm of bone markers in blood.Calcif. Tissue Int.2022112212614710.1007/s00223‑022‑00965‑135305134
    [Google Scholar]
  55. Jura-PółtorakA. SzeremetaA. OlczykK. Zoń-GiebelA. Komosińska-VassevK. Bone metabolism and RANKL/OPG ratio in rheumatoid arthritis women treated with TNF-α inhibitors.J. Clin. Med.20211013290510.3390/jcm1013290534209821
    [Google Scholar]
  56. NairS. HatkarS. PatilA. SurveS. JoshiB. BalasinorN. DesaiM. Age-related changes and reference intervals of RANKL, OPG, and bone turnover markers in Indian women.Arch. Osteoporos.202116114610.1007/s11657‑021‑01014‑434606009
    [Google Scholar]
  57. GifreL. Ruiz-GaspàS. CarrascoJ.L. PortellE. VidalJ. MuxiA. MonegalA. GuañabensN. PerisP. Effect of recent spinal cord injury on the OPG/RANKL system and its relationship with bone loss and the response to denosumab therapy.Osteoporos. Int.20172892707271510.1007/s00198‑017‑4090‑428580511
    [Google Scholar]
  58. BrownJ.P. Don-WauchopeA. DouvilleP. AlbertC. VasikaranS.D. Current use of bone turnover markers in the management of osteoporosis.Clin. Biochem.2022109-11011010.1016/j.clinbiochem.2022.09.00236096182
    [Google Scholar]
  59. MaD. WuZ. ZhaoX. ZhuX. AnQ. WangY. ZhaoJ. SuY. YangB. XuK. ZhangL. Immunomodulatory effects of umbilical mesenchymal stem cell-derived exosomes on CD4+ T cells in patients with primary Sjögren’s syndrome.Inflammopharmacology20233141823183810.1007/s10787‑023‑01189‑x37012581
    [Google Scholar]
  60. XuC. FengC. HuangP. LiY. LiuR. LiuC. HanY. ChenL. DingY. ShaoC. ShiY. TNFα and IFNγ rapidly activate PI3K-AKT signaling to drive glycolysis that confers mesenchymal stem cells enhanced anti-inflammatory property.Stem Cell Res. Ther.202213149110.1186/s13287‑022‑03178‑336195887
    [Google Scholar]
  61. WangZ. HuY. WangX. ChenY. WuD. JiH. YuC. FangJ. PanC. WangL. WangS. GuoY. LuY. WuD. RenF. ZhuH. ShiY. Comparative analysis of the therapeutic effects of fresh and cryopreserved human umbilical cord derived mesenchymal stem cells in the treatment of psoriasis.Stem Cell Rev. Rep.20231961922193610.1007/s12015‑023‑10556‑837199874
    [Google Scholar]
  62. ChenH. LuoY. ZhuY. YeY. ChenD. SongX. XiaoZ. LiuM. LiS. Enhanced secretion of hepatocyte growth factor in human umbilical cord mesenchymal stem cells ameliorates pulmonary fibrosis induced by bleomycin in rats.Front. Pharmacol.202313107073610.3389/fphar.2022.107073636726784
    [Google Scholar]
  63. XiangE. HanB. ZhangQ. RaoW. WangZ. ChangC. ZhangY. TuC. LiC. WuD. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis.Stem Cell Res. Ther.202011133610.1186/s13287‑020‑01852‑y32746936
    [Google Scholar]
  64. EldalyA.S. MashalyS.M. FoudaE. EmamO.S. AglanA. AbuasbehJ. KhuranaA. HamdarH. FathA.R. Systemic anti-inflammatory effects of mesenchymal stem cells in burn: A systematic review of animal studies.J. Clin. Transl. Res.20228427629135991083
    [Google Scholar]
  65. ShenD. WangZ. WangH. ZhuH. JiangC. XieF. ZhangH. LvQ. LiuQ. QiN. WangH. Evaluation of preclinical efficacy of human umbilical cord mesenchymal stem cells in ankylosing spondylitis.Front. Immunol.202314115392710.3389/fimmu.2023.115392737063838
    [Google Scholar]
  66. WuL. WeiQ. LvY. XueJ. ZhangB. SunQ. XiaoT. HuangR. WangP. DaiX. XiaH. LiJ. YangX. LiuQ. Wnt/β-catenin pathway is involved in cadmium-induced inhibition of osteoblast differentiation of bone marrow mesenchymal stem cells.Int. J. Mol. Sci.2019206151910.3390/ijms2006151930917596
    [Google Scholar]
  67. WangE. ZhangY. DingR. WangX. ZhangS. LiX. miR-30a-5p induces the adipogenic differentiation of bone marrow mesenchymal stem cells by targeting FAM13A/Wnt/β-catenin signaling in aplastic anemia.Mol. Med. Rep.20222512534821370
    [Google Scholar]
  68. JingH. SuX. GaoB. ShuaiY. ChenJ. DengZ. LiaoL. JinY. Correction: Epigenetic inhibition of Wnt pathway suppresses osteogenic differentiation of BMSCs during osteoporosis.Cell Death Dis.202213219410.1038/s41419‑022‑04616‑z35228514
    [Google Scholar]
  69. XieL. ZouL. ChenJ. LiuY. All-trans retinoic acid inhibits bone marrow mesenchymal stem cell commitment to adipocytes via upregulating FRA1 signaling.Int. J. Endocrinol.2020202011110.1155/2020/652578732089684
    [Google Scholar]
  70. ZhaoY. KangZ. MaoY. LuoF. HuoY. GLIS family zinc finger protein 2 (GLIS2) negatively regulates the Wnt/β-catenin pathway to inhibit the osteogenic differentiation of human bone marrow mesenchymal stem cells.Xibao Yu Fenzi Mianyixue Zazhi202339215916436872435
    [Google Scholar]
  71. SahebdelF. Parvaneh TafreshiA. ArefianE. RoussaE. NadriS. ZeynaliB. Wnt/β-catenin signaling pathway is involved in early dopaminergic differentiation of trabecular meshwork-derived mesenchymal stem cells.J. Cell. Biochem.202212361120112910.1002/jcb.3026935533251
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X284911240131100909
Loading
/content/journals/cscr/10.2174/011574888X284911240131100909
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test