Skip to content
2000
image of Sialic Acids and Cancer: Pathophysiological Association between 
Metastatic Progress and Treatment

Abstract

Neoplasm metastasis is a multi-step process with a high rate of cancer mortality (>60%). Several complex pathogenesis pathways and key therapeutic targets are unclear to us now. To change this scenario, effective drug targets and underlying mechanisms should be found, and high-quality metastasis treatment should be supported. Aberrant tumor sialylation was proposed as a putative drug target candidate to bridge the gaps between metastatic spread and drug responses (genetic, molecular, and animal models). More recently, several promising therapeutic mechanisms and benefits against neoplasm metastasis have been observed by potential association for the target of higher levels and diverse forms of sialic acids (sia) analogues, antigens, glycan, sialylation enzymes, and conjugates. Subsequently, sia-related pathophysiology in cancer diagnosis, prognosis, and therapeutic responses has been reviewed. New algorithms, computation, experimental evaluations, and modern technology might see breakthroughs in therapeutic targets, responses, and immune regulation sialylation enzymes, associated genes, different glycol conjugates, and other hallmarks of cancer.

Loading

Article metrics loading...

/content/journals/csci/10.2174/0127726215318526241030055747
2024-11-08
2025-05-21
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Ali I. Rahis-ud-din, K. Saleem, HY. Aboul-Enein, and A. Rather, “Social aspects of cancer genesis”. Cancer Ther. 2011 8 1 6 14
    [Google Scholar]
  3. Gupta G.P. Massagué J. Cancer metastasis: Building a framework. Cell 2006 127 4 679 695 10.1016/j.cell.2006.11.001 17110329
    [Google Scholar]
  4. Lim E.J. Kang J.H. Kim Y.J. Kim S. Lee S.J. ICAM-1 promotes cancer progression by regulating SRC activity as an adapter protein in colorectal cancer. Cell Death Dis. 2022 13 4 417 10.1038/s41419‑022‑04862‑1 35487888
    [Google Scholar]
  5. Fares J. Fares M.Y. Khachfe H.H. Salhab H.A. Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020 5 1 28 10.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  6. Lu D.Y. Lu T.R. Wu H.Y. Cao S. Cancer metastases treatments. Curr. Drug Ther. 2013 8 1 24 29 10.2174/1574885511308010003
    [Google Scholar]
  7. Parker A.L. Benguigui M. Fornetti J. Goddard E. Lucotti S. Insua-Rodríguez J. Wiegmans A.P. Current challenges in metastasis research and future innovation for clinical translation. Clin. Exp. Metastasis 2022 39 2 263 277 10.1007/s10585‑021‑10144‑5 35072851
    [Google Scholar]
  8. Lu D.Y. Xu B. Lu T.R. Anticancer drug development, evaluative architecture. Lett. Drug Des. Discov. 2024 21 5 836 846 10.2174/1570180819666220610102444
    [Google Scholar]
  9. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  10. Lu D-Y. Lu T-R. Anti-metastatic drug development, overview and perspectives Hosp. palliat. med. int. j. 2023 6 2 45 51 10.15406/hpmij.2023.06.00217
    [Google Scholar]
  11. Lu D. Cao J. Structural aberrations of cellular sialic acids and their functions in cancer metastases. J Shanghai Univ 2001 5 2 164 170 10.1007/s11741‑001‑0016‑6
    [Google Scholar]
  12. Munkley J. Scott E. Targeting aberrant sialylation to treat cancer. Medicines (Basel) 2019 6 4 102 10.3390/medicines6040102 31614918
    [Google Scholar]
  13. Lu D.Y. Lu T.R. Wu H.Y. Antimetastatic therapy targeting aberrant sialylation profiles in cancer cells. Drug Ther Stud 2011 1 1 12 10.4081/dts.2011.e12
    [Google Scholar]
  14. Dobie C. Skropeta D. Insights into the role of sialylation in cancer progression and metastasis. Br. J. Cancer 2021 124 1 76 90 10.1038/s41416‑020‑01126‑7 33144696
    [Google Scholar]
  15. Pietrobono S. Stecca B. Aberrant sialylation in cancer: Biomarker and potential target for therapeutic intervention. Cancers (Basel) 2021 13 9 2014 10.3390/cancers13092014 33921986
    [Google Scholar]
  16. Varki N.M. Varki A. Diversity in cell surface sialic acid presentations: Implications for biology and disease. Lab. Invest. 2007 87 9 851 857 10.1038/labinvest.3700656 17632542
    [Google Scholar]
  17. Zhang H. Gu Y. He W. Kuo F. Zhang Y. Wang D. He L. Yang Y. Wang H. Chen Y. Correlation between sialidase NEU1 mRNA expression changes in autism spectrum disorder. Front. Psychiatry 2022 13 870374 10.3389/fpsyt.2022.870374 35757207
    [Google Scholar]
  18. Ertunc N. Phitak T. Wu D. Fujita H. Hane M. Sato C. Kitajima K. Sulfation of sialic acid is ubiquitous and essential for vertebrate development. Sci. Rep. 2022 12 1 12496 10.1038/s41598‑022‑15143‑4 35864127
    [Google Scholar]
  19. Turumi K.I. Dawes M.L. Serum sialic acid levels in mice with neoplasms. Cancer Res. 1958 18 5 575 577 13547052
    [Google Scholar]
  20. Freire-de-Lima L. Previato J.O. Mendonça-Previato L. Editorial: Glycosylation changes in cancer: An innovative frontier at the interface of cancer and glycol-biology. Front. Oncol. 2016 6 254 10.3389/fonc.2016.00254 27965934
    [Google Scholar]
  21. Angata T. Varki A. Chemical diversity in the sialic acids and related α-keto acids: An evolutionary perspective. Chem. Rev. 2002 102 2 439 470 10.1021/cr000407m 11841250
    [Google Scholar]
  22. Kimura A. Nagai Y. Turumi K.I. Kawashima Y. Sato H. Hexosamine and sialic acid contents in cells. Nature 1961 191 4788 596 10.1038/191596a0 13756013
    [Google Scholar]
  23. Yogeeswaran G. Sebastian H. Stein B.S. Cell surface sialylation of glycoproteins and glycosphingolipids in cultured metastatic variant rna‐virus transformed non‐producer BALB/c 3T3 cell lines. Int. J. Cancer 1979 24 2 193 202 10.1002/ijc.2910240211 385511
    [Google Scholar]
  24. Yogeeswaran G. Salk P.L. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 1981 212 4502 1514 1516 10.1126/science.7233237 7233237
    [Google Scholar]
  25. Lu D.Y. Xu J. Lu T.R. Wu H.Y. Xu B. Inhibitions of several antineoplastic drugs on serum sialic Acid levels in mice bearing tumors. Sci. Pharm. 2013 81 1 223 231 10.3797/scipharm.1209‑18 23641340
    [Google Scholar]
  26. Lu D.Y. Liang G. Zhang M.J. Xu B. Serum contents of sialic acids in mice bearing different tumors. Chin Sci Bull (Eng) 1994 39 14 1220 1223
    [Google Scholar]
  27. Yu L.G. The oncofetal Thomsen–Friedenreich carbohydrate antigen in cancer progression. Glycoconj. J. 2007 24 8 411 420 10.1007/s10719‑007‑9034‑3 17457671
    [Google Scholar]
  28. Lu D.Y. Lu T.R. Wu H.Y. Development of antimetastatic drugs by targeting tumor sialic acids. Sci. Pharm. 2012 80 3 497 508 10.3797/scipharm.1205‑01 23008802
    [Google Scholar]
  29. Peracaula R. Tabarés G. López-Ferrer A. Brossmer R. de Bolós C. de Llorens R. Role of sialyltransferases involved in the biosynthesis of Lewis antigens in human pancreatic tumour cells. Glycoconj. J. 2005 22 3 135 144 10.1007/s10719‑005‑0734‑2 16133834
    [Google Scholar]
  30. Gc S. Bellis S.L. Hjelmeland A.B. ST6Gal1: Oncogenic signaling pathways and targets. Front. Mol. Biosci. 2022 9 962908 10.3389/fmolb.2022.962908 36106023
    [Google Scholar]
  31. Dall’Olio F. Chiricolo M. Sialyltransferases in cancer. Glycoconj. J. 2001 18 11/12 841 850 10.1023/A:1022288022969 12820717
    [Google Scholar]
  32. Pucci M. Duca M. Malagolini N. Dall’Olio F. Glycosyltransferaes in cancer: Prognostic biomarkers of survival in patient cohorts and impact on malignancy in experimental models. Cancers (Basel) 2022 14 9 2128 10.3390/cancers14092128 35565254
    [Google Scholar]
  33. Miyagi T. Wada T. Yamaguchi K. Shiozaki K. Sato I. Kakugawa Y. Yamanami H. Fujiya T. Human sialidase as a cancer marker. Proteomics 2008 8 16 3303 3311 10.1002/pmic.200800248 18651674
    [Google Scholar]
  34. Sjoberg E.R. Chammas R. Ozawa H. Kawashima I. Khoo K.H. Morris H.R. Dell A. Tai T. Varki A. Expression of de-N-acetyl-gangliosides in human melanoma cells is induced by genistein or nocodazole. J. Biol. Chem. 1995 270 7 2921 2930 10.1074/jbc.270.7.2921 7852370
    [Google Scholar]
  35. Zhou Q. Hakomori S. Kitamura K. Igarashi Y. GM3 directly inhibits tyrosine phosphorylation and de-N-acetyl-GM3 directly enhances serine phosphorylation of epidermal growth factor receptor, independently of receptor-receptor interaction. J. Biol. Chem. 1994 269 3 1959 1965 10.1016/S0021‑9258(17)42121‑1 7507488
    [Google Scholar]
  36. Hanai N. Dohi T. Nores G.A. Hakomori S. A novel ganglioside, de-N-acetyl-GM3 (II3NeuNH2LacCer), acting as a strong promoter for epidermal growth factor receptor kinase and as a stimulator for cell growth. J. Biol. Chem. 1988 263 13 6296 6301 10.1016/S0021‑9258(18)68785‑X 2834372
    [Google Scholar]
  37. Sonnenburg J.L. van Halbeek H. Varki A. Characterization of the acid stability of glycosidically linked neuraminic acid: Use in detecting de-N-acetyl-gangliosides in human melanoma. J. Biol. Chem. 2002 277 20 17502 17510 10.1074/jbc.M110867200 11884388
    [Google Scholar]
  38. Chiche J. Brahimi-Horn M.C. Pouysségur J. Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. J. Cell. Mol. Med. 2010 14 4 771 794 10.1111/j.1582‑4934.2009.00994.x 20015196
    [Google Scholar]
  39. Munkley J. Elliott D.J. Hallmarks of glycosylation in cancer. Oncotarget 2016 7 23 35478 35489 10.18632/oncotarget.8155 27007155
    [Google Scholar]
  40. Challapalli A. Aboagye E.O. Positron emission tomography imaging of tumor cell metabolism and application to therapy response monitoring. Front. Oncol. 2016 6 44 10.3389/fonc.2016.00044 26973812
    [Google Scholar]
  41. Serkova N.J. Eckhardt S.G. Metabolic imaging to assess treatment response to cytotoxic and cytostatic agents. Front. Oncol. 2016 6 152 10.3389/fonc.2016.00152 27471678
    [Google Scholar]
  42. Xiao H. Woods E.C. Vukojicic P. Bertozzi C.R. Precision glycocalyx editing as a strategy for cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2016 113 37 10304 10309 10.1073/pnas.1608069113 27551071
    [Google Scholar]
  43. Büll C. den Brok M.H. Adema G.J. Sweet escape: Sialic acids in tumor immune evasion. Biochim. Biophys. Acta 2014 1846 1 238 246 25026312
    [Google Scholar]
  44. Chiang C.H. Wang C.H. Chang H.C. More S.V. Li W.S. Hung W.C. A novel sialyltransferase inhibitor AL10 suppresses invasion and metastasis of lung cancer cells by inhibiting integrin‐mediated signaling. J. Cell. Physiol. 2010 223 2 492 499 10.1002/jcp.22068 20112294
    [Google Scholar]
  45. Jayant S. Khandare J.J. Wang Y. Singh A.P. Vorsa N. Minko T. Targeted sialic acid-doxorubicin prodrugs for intracellular delivery and cancer treatment. Pharm. Res. 2007 24 11 2120 2130 10.1007/s11095‑007‑9406‑1 17668297
    [Google Scholar]
  46. Lu D.Y. Lu T.R. Xu B. Ding J. Chen E-H. Wu H.Y. Wu S-Y. Sastry Yarla N. Zhu H. Antimetastatic therapy at aberrant sialylation in cancer cells, a potential hotspot. Clin. Proteomic. Bioinform. 2017 2 1 118 10.15761/CPB.1000118
    [Google Scholar]
  47. Matsumoto A. Cabral H. Sato N. Kataoka K. Miyahara Y. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew. Chem. Int. Ed. 2010 49 32 5494 5497 10.1002/anie.201001220 20575125
    [Google Scholar]
  48. Aich U. Campbell C.T. Elmouelhi N. Weier C.A. Sampathkumar S.G. Choi S.S. Yarema K.J. Regioisomeric SCFA attachment to hexosamines separates metabolic flux from cytotoxicity and MUC1 suppression. ACS Chem. Biol. 2008 3 4 230 240 10.1021/cb7002708 18338853
    [Google Scholar]
  49. Fuster M.M. Brown J.R. Wang L. Esko J.D. A disaccharide precursor of sialyl Lewis X inhibits metastatic potential of tumor cells. Cancer Res. 2003 63 11 2775 2781 12782582
    [Google Scholar]
  50. Zheng J.S. Zheng S.Y. Zhang Y.B. Yu B. Zheng W. Yang F. Chen T. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles. Colloids Surf. B Biointerfaces 2011 83 1 183 187 10.1016/j.colsurfb.2010.11.023 21145219
    [Google Scholar]
  51. Manu K.A. Kuttan G. Anti-metastatic potential of Punarnavine, an alkaloid from Boerhaavia diffusa Linn. Immunobiology 2009 214 4 245 255 10.1016/j.imbio.2008.10.002 19171408
    [Google Scholar]
  52. Ladenstein R. Pötschger U. Valteau-Couanet D. Luksch R. Castel V. Yaniv I. Laureys G. Brock P. Michon J.M. Owens C. Trahair T. Chan G.C.F. Ruud E. Schroeder H. Beck Popovic M. Schreier G. Loibner H. Ambros P. Holmes K. Castellani M.R. Gaze M.N. Garaventa A. Pearson A.D.J. Lode H.N. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): A multicentre, randomised, phase 3 trial. Lancet Oncol. 2018 19 12 1617 1629 10.1016/S1470‑2045(18)30578‑3 30442501
    [Google Scholar]
  53. Holmberg L.A. Sandmaier B.M. Vaccination with Theratope® (STn-KLH) as treatment for breast cancer. Expert Rev. Vaccines 2004 3 6 655 663 10.1586/14760584.3.6.655 15606349
    [Google Scholar]
  54. Thejass P. Kuttan G. Antimetastatic activity of sulforaphane. Life Sci. 2006 78 26 3043 3050 10.1016/j.lfs.2005.12.038 16600309
    [Google Scholar]
  55. Lee S.J. Chung I.M. Kim M.Y. Park K.D. Park W.W. Moon H.I. Inhibition of lung metastasis in mice by oligonol. Phytother. Res. 2009 23 7 1043 1046 10.1002/ptr.2810 19288502
    [Google Scholar]
  56. Lu D.Y. Personalized cancer chemotherapy, an effective way for enhancing outcomes in clinics. UK Woodhead Publishing, Elsevier 2014
    [Google Scholar]
  57. Lu D.Y. Qu R.X. Lu T.R. Wu H.Y. Cancer bioinformatics for update anticancer drug developments and personalized therapeutics. Rev. Recent Clin. Trials 2017 12 2 101 110 10.2174/1574887112666170209161444 28190390
    [Google Scholar]
  58. Lu D.Y. Lu T.R. Xu B. Ding J. Pharmacogenetics of cancer therapy: Breakthroughs from beyond? Future Sci. OA 2015 1 4 FSO80 10.4155/fso.15.80
    [Google Scholar]
  59. Lu D.Y. Lu T.R. Che J.Y. Yarla N.S. Individualized cancer therapy, what is the next generation? ECCancer 2018 2 6 286 297
    [Google Scholar]
  60. Lu D.Y. Lu T.R. Yarla N.S. Xu B. Drug sensitivity testing for cancer therapy, key areas. Rev. Recent Clin. Trials 2022 17 4 291 299 10.2174/1574887117666220819094528 35986532
    [Google Scholar]
  61. Lu D.Y. Lu T.R. Xu B. Che J.Y. Shen Y. Yarla N.S. Individualized cancer therapy, future approaches. Curr. Pharmacogenomics Person. Med. 2018 16 2 156 163 10.2174/1875692116666180821095434
    [Google Scholar]
  62. Khalil I.G. Hill C. Systems biology for cancer. Curr. Opin. Oncol. 2005 17 1 44 48 10.1097/01.cco.0000150951.38222.16 15608512
    [Google Scholar]
  63. Lu D.Y. Lu T.R. Mathematics or physics-majored students on the biomedical fields, insiders or outsiders? Metabolomics 2015 5 4 e142
    [Google Scholar]
  64. Loewe L. A framework for evolutionary systems biology. BMC Syst. Biol. 2009 3 1 27 10.1186/1752‑0509‑3‑27 19239699
    [Google Scholar]
  65. Werner H.M.J. Mills G.B. Ram P.T. Cancer systems biology: A peek into the future of patient care? Nat. Rev. Clin. Oncol. 2014 11 3 167 176 10.1038/nrclinonc.2014.6 24492837
    [Google Scholar]
  66. Turro E. Astle W.J. Megy K. Gräf S. Greene D. Shamardina O. Allen H.L. Sanchis-Juan A. Frontini M. Thys C. Stephens J. Mapeta R. Burren O.S. Downes K. Haimel M. Tuna S. Deevi S.V.V. Aitman T.J. Bennett D.L. Calleja P. Carss K. Caulfield M.J. Chinnery P.F. Dixon P.H. Gale D.P. James R. Koziell A. Laffan M.A. Levine A.P. Maher E.R. Markus H.S. Morales J. Morrell N.W. Mumford A.D. Ormondroyd E. Rankin S. Rendon A. Richardson S. Roberts I. Roy N.B.A. Saleem M.A. Smith K.G.C. Stark H. Tan R.Y.Y. Themistocleous A.C. Thrasher A.J. Watkins H. Webster A.R. Wilkins M.R. Williamson C. Whitworth J. Humphray S. Bentley D.R. Abbs S. Abulhoul L. Adlard J. Ahmed M. Aitman T.J. Alachkar H. Allsup D.J. Almeida-King J. Ancliff P. Antrobus R. Armstrong R. Arno G. Ashford S. Astle W.J. Attwood A. Aurora P. Babbs C. Bacchelli C. Bakchoul T. Banka S. Bariana T. Barwell J. Batista J. Baxendale H.E. Beales P.L. Bennett D.L. Bentley D.R. Bierzynska A. Biss T. Bitner-Glindzicz M.A.K. Black G.C. Bleda M. Blesneac I. Bockenhauer D. Bogaard H. Bourne C.J. Boyce S. Bradley J.R. Bragin E. Breen G. Brennan P. Brewer C. Brown M. Browning A.C. Browning M.J. Buchan R.J. Buckland M.S. Bueser T. Diz C.B. Burn J. Burns S.O. Burren O.S. Burrows N. Calleja P. Campbell C. Carr-White G. Carss K. Casey R. Caulfield M.J. Chambers J. Chambers J. Chan M.M.Y. Cheah C. Cheng F. Chinnery P.F. Chitre M. Christian M.T. Church C. Clayton-Smith J. Cleary M. Brod N.C. Coghlan G. Colby E. Cole T.R.P. Collins J. Collins P.W. Colombo C. Compton C.J. Condliffe R. Cook S. Cook H.T. Cooper N. Corris P.A. Furnell A. Cunningham F. Curry N.S. Cutler A.J. Daniels M.J. Dattani M. Daugherty L.C. Davis J. De Soyza A. Deevi S.V.V. Dent T. Deshpande C. Dewhurst E.F. Dixon P.H. Douzgou S. Downes K. Drazyk A.M. Drewe E. Duarte D. Dutt T. Edgar J.D.M. Edwards K. Egner W. Ekani M.N. Elliott P. Erber W.N. Erwood M. Estiu M.C. Evans D.G. Evans G. Everington T. Eyries M. Fassihi H. Favier R. Findhammer J. Fletcher D. Flinter F.A. Floto R.A. Fowler T. Fox J. Frary A.J. French C.E. Freson K. Frontini M. Gale D.P. Gall H. Ganesan V. Gattens M. Geoghegan C. Gerighty T.S.A. Gharavi A.G. Ghio S. Ghofrani H-A. Gibbs J.S.R. Gibson K. Gilmour K.C. Girerd B. Gleadall N.S. Goddard S. Goldstein D.B. Gomez K. Gordins P. Gosal D. Gräf S. Graham J. Grassi L. Greene D. Greenhalgh L. Greinacher A. Gresele P. Griffiths P. Grigoriadou S. Grocock R.J. Grozeva D. Gurnell M. Hackett S. Hadinnapola C. Hague W.M. Hague R. Haimel M. Hall M. Hanson H.L. Haque E. Harkness K. Harper A.R. Harris C.L. Hart D. Hassan A. Hayman G. Henderson A. Herwadkar A. Hoffman J. Holden S. Horvath R. Houlden H. Houweling A.C. Howard L.S. Hu F. Hudson G. Hughes J. Huissoon A.P. Humbert M. Humphray S. Hunter S. Hurles M. Irving M. Izatt L. James R. Johnson S.A. Jolles S. Jolley J. Josifova D. Jurkute N. Karten T. Karten J. Kasanicki M.A. Kazkaz H. Kazmi R. Kelleher P. Kelly A.M. Kelsall W. Kempster C. Kiely D.G. Kingston N. Klima R. Koelling N. Kostadima M. Kovacs G. Koziell A. Kreuzhuber R. Kuijpers T.W. Kumar A. Kumararatne D. Kurian M.A. Laffan M.A. Lalloo F. Lambert M. Allen H.L. Lawrie A. Layton D.M. Lench N. Lentaigne C. Lester T. Levine A.P. Linger R. Longhurst H. Lorenzo L.E. Louka E. Lyons P.A. Machado R.D. MacKenzie Ross R.V. Madan B. Maher E.R. Maimaris J. Malka S. Mangles S. Mapeta R. Marchbank K.J. Marks S. Markus H.S. Marschall H-U. Marshall A. Martin J. Mathias M. Matthews E. Maxwell H. McAlinden P. McCarthy M.I. McKinney H. McMahon A. Meacham S. Mead A.J. Castello I.M. Megy K. Mehta S.G. Michaelides M. Millar C. Mohammed S.N. Moledina S. Montani D. Moore A.T. Morales J. Morrell N.W. Mozere M. Muir K.W. Mumford A.D. Nemeth A.H. Newman W.G. Newnham M. Noorani S. Nurden P. O’Sullivan J. Obaji S. Odhams C. Okoli S. Olschewski A. Olschewski H. Ong K.R. Oram S.H. Ormondroyd E. Ouwehand W.H. Palles C. Papadia S. Park S-M. Parry D. Patel S. Paterson J. Peacock A. Pearce S.H. Peden J. Peerlinck K. Penkett C.J. Pepke-Zaba J. Petersen R. Pilkington C. Poole K.E.S. Prathalingam R. Psaila B. Pyle A. Quinton R. Rahman S. Rankin S. Rao A. Raymond F.L. Rayner-Matthews P.J. Rees C. Rendon A. Renton T. Rhodes C.J. Rice A.S.C. Richardson S. Richter A. Robert L. Roberts I. Rogers A. Rose S.J. Ross-Russell R. Roughley C. Roy N.B.A. Ruddy D.M. Sadeghi-Alavijeh O. Saleem M.A. Samani N. Samarghitean C. Sanchis-Juan A. Sargur R.B. Sarkany R.N. Satchell S. Savic S. Sayer J.A. Sayer G. Scelsi L. Schaefer A.M. Schulman S. Scott R. Scully M. Searle C. Seeger W. Sen A. Sewell W.A.C. Seyres D. Shah N. Shamardina O. Shapiro S.E. Shaw A.C. Short P.J. Sibson K. Side L. Simeoni I. Simpson M.A. Sims M.C. Sivapalaratnam S. Smedley D. Smith K.R. Smith K.G.C. Snape K. Soranzo N. Soubrier F. Southgate L. Spasic-Boskovic O. Staines S. Staples E. Stark H. Stephens J. Steward C. Stirrups K.E. Stuckey A. Suntharalingam J. Swietlik E.M. Syrris P. Tait R.C. Talks K. Tan R.Y.Y. Tate K. Taylor J.M. Taylor J.C. Thaventhiran J.E. Themistocleous A.C. Thomas E. Thomas D. Thomas M.J. Thomas P. Thomson K. Thrasher A.J. Threadgold G. Thys C. Tilly T. Tischkowitz M. Titterton C. Todd J.A. Toh C-H. Tolhuis B. Tomlinson I.P. Toshner M. Traylor M. Treacy C. Treadaway P. Trembath R. Tuna S. Turek W. Turro E. Twiss P. Vale T. Geet C.V. Zuydam N. Vandekuilen M. Vandersteen A.M. Vazquez-Lopez M. von Ziegenweidt J. Vonk Noordegraaf A. Wagner A. Waisfisz Q. Walker S.M. Walker N. Walter K. Ware J.S. Watkins H. Watt C. Webster A.R. Wedderburn L. Wei W. Welch S.B. Wessels J. Westbury S.K. Westwood J-P. Wharton J. Whitehorn D. Whitworth J. Wilkie A.O.M. Wilkins M.R. Williamson C. Wilson B.T. Wong E.K.S. Wood N. Wood Y. Woods C.G. Woodward E.R. Wort S.J. Worth A. Wright M. Yates K. Yong P.F.K. Young T. Yu P. Yu-Wai-Man P. Zlamalova E. Kingston N. Walker N. Bradley J.R. Ashford S. Penkett C.J. Freson K. Stirrups K.E. Raymond F.L. Ouwehand W.H. Whole-genome sequencing of patients with rare diseases in a national health system. Nature 2020 583 7814 96 102 10.1038/s41586‑020‑2434‑2 32581362
    [Google Scholar]
  67. Lu D.Y. Lu T.R. Yarla N.S. Xu B. Chen E.H. Ding J. Anticancer drug development, breakthroughs are waiting. Adv. Pharmacol. Clin. Trials 2017 2 1 119 10.23880/APCT‑16000119
    [Google Scholar]
  68. Lu D.Y. Lu T.R. Chen E.H. Yarla N.S. Xu B. Ding J. Zhu H. Anticancer drug development, system updating and global participation. Curr. Drug Ther. 2017 12 1 37 45 10.2174/1574885511666161025122906
    [Google Scholar]
  69. Lu D.Y. Lu T.R. Antimetastatic drug, pharmacologic challenge and opportunity. Curr Drug Ther 2024 19 10.2174/0115748855284405231212051251
    [Google Scholar]
/content/journals/csci/10.2174/0127726215318526241030055747
Loading
/content/journals/csci/10.2174/0127726215318526241030055747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test