Skip to content
2000
image of Anticancer Drug Development, Pharmaceutical Progress

Abstract

Anticancer drug development is becoming complex and demanding because human cancer leads to 12% of global human mortality. Chemical and pharmacological breakthroughs play leading roles in updating drug evaluation and development for different types of tumors.

Chemical and pharmacological breakthroughs manifest in different facets. A large proportion of financial and workload increases in drug discovery must be paid off. In front of complexity, difficulties, and financial increase of drug development, evaluative promotion must go miniature-wise and single-cell-wise. Multi-omics knowledge and technology are greatly expanded and understood in depth. This type of technical trend is suitable for current experimental exploration and clinical occasions. Technical and pharmacologic advances are especially emphasized to address this trend.

Presently, the anticancer pharmaceutical study is multi-faceted and risk-taking. To keep up this momentum, multi-disciplinary drug evaluation, clinical selection, and combination principles should be discovered. Past and futuristic chemical and pharmacological interactions and breakthroughs are discussed.

In summary, the landscape of pharmaceutical investigation should be integrated with chemical and pharmacological knowledge in every facet of drug development and clinical personalization.

Loading

Article metrics loading...

/content/journals/csci/10.2174/0127726215312620241029102421
2024-11-04
2024-11-22
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Ahmad A.S. Ormiston-Smith N. Sasieni P.D. Trends in the lifetime risk of developing cancer in Great Britain: Comparison of risk for those born from 1930 to 1960. Br. J. Cancer 2015 112 5 943 947 10.1038/bjc.2014.606 25647015
    [Google Scholar]
  3. Fojo T. The high cost of ignorance in oncology. Semin. Oncol. 2016 43 6 623 624 10.1053/j.seminoncol.2016.11.010 28061979
    [Google Scholar]
  4. Mina L.A. Sledge G.W. Jr Rethinking the metastatic cascade as a therapeutic target. Nat. Rev. Clin. Oncol. 2011 8 6 325 332 10.1038/nrclinonc.2011.59 21502993
    [Google Scholar]
  5. Lu D.Y. Lu T.R. Cao S. Cancer metastases and clinical therapies. Cell Dev. Biol. 2012 1 4 e110 10.4172/2168‑9296.1000e110
    [Google Scholar]
  6. Lu D.Y. Lu T.R. Wu H.Y. Cao S. Cancer metastasis treatments. Curr. Drug Ther. 2013 8 1 24 29 10.2174/1574885511308010003
    [Google Scholar]
  7. Ruggeri B.A. Camp F. Miknyoczki S. Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochem. Pharmacol. 2014 87 1 150 161 10.1016/j.bcp.2013.06.020 23817077
    [Google Scholar]
  8. Herter-Sprie G.S. Kung A.L. Wong K.K. New cast for a new era: Preclinical cancer drug development revisited. J. Clin. Invest. 2013 123 9 3639 3645 10.1172/JCI68340 23999436
    [Google Scholar]
  9. Lu DY. Lu TR. Antimetastatic drugs, pharmacologic challenge and opportunity. Curr. Drug ther. 2025 10.2174/0115748855284405231212051251
    [Google Scholar]
  10. Fares J. Fares M.Y. Khachfe H.H. Salhab H.A. Fares Y. Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct. Target. Ther. 2020 5 1 28 10.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  11. Mervis J. Productivity counts--But the definition is key. Science 2005 309 5735 726 727 10.1126/science.309.5735.726 16051784
    [Google Scholar]
  12. Hay M. Thomas D.W. Craighead J.L. Economides C. Rosenthal J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014 32 1 40 51 10.1038/nbt.2786 24406927
    [Google Scholar]
  13. Lu D.Y. Chen E.H. Lu T.R. Anticancer drug development, a matter of money or a matter of idea? Metabolomics 2015 5 2 e134
    [Google Scholar]
  14. Steeg P.S. Targeting metastasis. Nat. Rev. Cancer 2016 16 4 201 218 10.1038/nrc.2016.25 27009393
    [Google Scholar]
  15. Lu D.Y. Lu T.R. Zhu H. Ding J. Xu B. Wu S.Y. Yarla N.S. Anticancer drug development, getting out from bottleneck. Int J Mol Biol 2017 2 1 00010
    [Google Scholar]
  16. Lu D.Y. Lu T.R. Anticancer drug development, challenge and dilemma. Nurs. Care Open Access J. 2020 7 3 72 75 10.15406/ncoaj.2020.07.00222
    [Google Scholar]
  17. Lu D.Y. Xu B. Lu T.R. Anticancer drug development, pharmacology update. EC Pharmacol. Toxicol. 2020 Special Issue 1 6
    [Google Scholar]
  18. Lu D.Y. Lu T.R. Xu B. Yarla N.S. Anticancer drug developments, challenge from historic perspective. EC Pharmacol. Toxicol. 2018 6 11 922 936
    [Google Scholar]
  19. Lu D.Y. Xu B. Lu T.R. Anticancer drug development, evaluative architecture. Lett. Drug Des. Discov. 2024 21 5 836 846 10.2174/1570180819666220610102444
    [Google Scholar]
  20. Hanahan D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022 12 1 31 46 10.1158/2159‑8290.CD‑21‑1059 35022204
    [Google Scholar]
  21. Behren A. Thompson E.W. Anderson R.L. Ferrao P.T. Cancer plasticity and the microenvironment: Implications for immunity and therapy response. Front. Oncol. 2019 9 276 10.3389/fonc.2019.00276 31134142
    [Google Scholar]
  22. Singla S. Sahai D. Mangal N. Clinical trials in oncology: A comprehensive review. EC Pharmacol. Toxicol. 2020 8 2 1 11
    [Google Scholar]
  23. Bedard P.L. Hansen A.R. Ratain M.J. Siu L.L. Tumour heterogeneity in the clinic. Nature 2013 501 7467 355 364 10.1038/nature12627 24048068
    [Google Scholar]
  24. Lu D.Y. Lu T.R. Xu B. Qi R.X. Sastry N.Y. Zhou X.D. Ding J. Cancer metastasis, a clinical dilemma for therapeutics. Curr. Drug Ther. 2016 11 2 163 169 10.2174/1574885511666160810143216
    [Google Scholar]
  25. Cencioni C. Comunanza V. Middonti E. Vallariello E. Bussolino F. The role of redox system in metastasis formation. Angiogenesis 2021 24 3 435 450 10.1007/s10456‑021‑09779‑5 33909153
    [Google Scholar]
  26. Lambert A.W. Pattabiraman D.R. Weinberg R.A. Emerging biological principles of metastasis. Cell 2017 168 4 670 691 10.1016/j.cell.2016.11.037 28187288
    [Google Scholar]
  27. Lu D.Y. Lu T.R. Drug sensitivity testing, a unique drug selection strategy. Adv. Biomarker Sci. Technol. 2020 2 59 66 10.1016/j.abst.2020.11.001
    [Google Scholar]
  28. Popova A.A. Levkin P.A. Precision medicine in oncology: In vitro drug sensitivity and resistance test (DSRT) for selection of personalized anticancer therapy. Adv. Ther. (Weinh.) 2020 3 2 1900100 10.1002/adtp.201900100
    [Google Scholar]
  29. Proietto M. Crippa M. Damiani C. Pasquale V. Sacco E. Vanoni M. Gilardi M. Tumor heterogeneity: Preclinical models, emerging technologies, and future applications. Front. Oncol. 2023 13 1164535 10.3389/fonc.2023.1164535 37188201
    [Google Scholar]
  30. Kitaeva K.V. Rutland C.S. Rizvanov A.A. Solovyeva V.V. Cell culture based in vitro test systems for anticancer drug screening. Front. Bioeng. Biotechnol. 2020 8 322 10.3389/fbioe.2020.00322 32328489
    [Google Scholar]
  31. Qian J. Olbrecht S. Boeckx B. Vos H. Laoui D. Etlioglu E. Wauters E. Pomella V. Verbandt S. Busschaert P. Bassez A. Franken A. Bempt M.V. Xiong J. Weynand B. van Herck Y. Antoranz A. Bosisio F.M. Thienpont B. Floris G. Vergote I. Smeets A. Tejpar S. Lambrechts D. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020 30 9 745 762 10.1038/s41422‑020‑0355‑0 32561858
    [Google Scholar]
  32. Peng M. Cheng X. Xiong W. Yi L. Wang Y. Integrated analysis of a competing endogenomic RNA network reveals a prognostic Inc RNA signature in bladder cancer. Front. Oncol. 2021 11 684242 10.3389/fonc.2021.684242 34408977
    [Google Scholar]
  33. Ortiz-Otero N. Marshall J.R. Lash B. King M.R. Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients. BMC Cancer 2020 20 1 873 10.1186/s12885‑020‑07376‑1 32917154
    [Google Scholar]
  34. Young H.S. McGowan L.M. Jepson K.A. Adams J.C. Impairment of cell adhesion and migration by inhibition of protein disulphide isomerases in three breast cancer cell lines. Biosci. Rep. 2020 40 10 BSR20193271 10.1042/BSR20193271 33095243
    [Google Scholar]
  35. Heissig B. Salama Y. Osada T. Okumura K. Hattori K. The multifaceted role of plasminogen in cancer. Int. J. Mol. Sci. 2021 22 5 2304 10.3390/ijms22052304 33669052
    [Google Scholar]
  36. Lander E.S. Initial impact of the sequencing of the human genome. Nature 2011 470 7333 187 197 10.1038/nature09792 21307931
    [Google Scholar]
  37. Rahimzadeh V. Bartlett G. Policies and practices of data-intensive primary care in the precision-medicine era. Intern. Med. Rev. (Wash. D. C.) 2017 3 9 1 14 10.18103/imr.v3i9.558
    [Google Scholar]
  38. Wei J. Ni N. Meng W. Huan Y. Gao Y. Early urinary protein changes during tumor formation in a NuTu-19 tail vein injection rat model. Sci. Rep. 2020 10 1 11709 10.1038/s41598‑020‑68674‑z 32678190
    [Google Scholar]
  39. Lu D.Y. Lu T.R. Chen X.L. Xu B. Ding J. Plasma fibrinogen concentrations in patients with solid tumor and therapeutic improvements by combining anticoagulants and fibrinolytical agents. Adv. Pharmacoepidemiol. Drug Saf. 2015 4 4 e133
    [Google Scholar]
  40. Dvorak H.F. Weaver V.M. Tlsty T.D. Bergers G. Tumor microenvironment and progression. J. Surg. Oncol. 2011 103 6 468 474 10.1002/jso.21709 21480238
    [Google Scholar]
  41. Lu D.Y. Lu T.R. Xu B. Ding J. Chen E-H. Wu H.Y. Wu S-Y. Sastry Yarla N. Zhu H. Antimetastatic therapy at aberrant sialylation in cancer cells, a potential hotspot. Clin. Proteom. Bioinform. 2017 2 1 118 10.15761/CPB.1000118
    [Google Scholar]
  42. Lu D.Y. Chen X.L. Ding J. Treatment of solid tumors and metastases by fibrinogen-targeted anticancer drug therapy. Med. Hypotheses 2007 68 1 188 193 10.1016/j.mehy.2006.06.045 16956730
    [Google Scholar]
  43. Prityko DA. Burkov IV. Safonov VV. Klimov DE. Gusev L. Palliative care for children. Problems and ways to solve them. EC Clin. Exp. Anat. 2019 2 9 23 29
    [Google Scholar]
  44. Lu D.Y. Chen Y.Z. Shen Y. Xu B. Lu D.F. Medical treatment for chronic or aggressive diseases, palliative therapy and nursery. Nov. Res. Sci. 2020 3 2 556 10.31031/NRS.2020.3.000556
    [Google Scholar]
  45. Watson J. Salisbury C. Banks J. Whiting P. Hamilton W. Predictive value of inflammatory markers for cancer diagnosis in primary care: A prospective cohort study using electronic health records. Br. J. Cancer 2019 120 11 1045 1051 10.1038/s41416‑019‑0458‑x 31015558
    [Google Scholar]
  46. Lu D.Y. Chen Y.Z. Lu T.R. Xu B. Lu D.F. Cancer metastasis, palliative treatment and nursery. Ann. Pharmacol. Pharm. 2020 5 1 1175
    [Google Scholar]
  47. Lin L.H. Chou H.C. Chang S.J. Liao E.C. Tsai Y.T. Wei Y.S. Chen H.Y. Lin M.W. Wang Y.S. Chien Y.A. Yu X.R. Chan H.L. Targeting UDP‐glucose dehydrogenase inhibits ovarian cancer growth and metastasis. J. Cell. Mol. Med. 2020 24 20 11883 11902 10.1111/jcmm.15808
    [Google Scholar]
  48. Fu Y. Li A. Wu J. Kunz R.F. Sun R. Ding Z. Wu J. Dong C. Fibrinogen and fibrin differentially regulate the local hydrodynamic environment in neutrophil-tumor cell-endothelial cell adhesion system. Appl. Sci. (Basel) 2020 11 1 79 10.3390/app11010079
    [Google Scholar]
  49. Lu D.Y. Wu F.G. Zhen Z.M. Lu T.R. Wu H.Y. Che J.Y. Xu B. Different spontaneous pulmonary metastasis inhibitions against lewis lung carcinoma in mice by bisdioxopiperazine compounds of different treatment schedules. Sci. Pharm. 2010 78 1 13 20 10.3797/scipharm.0910‑16 21179367
    [Google Scholar]
  50. Parker A.L. Benguigui M. Fornetti J. Goddard E. Lucotti S. Insua-Rodríguez J. Wiegmans A.P. Current challenges in metastasis research and future innovation for clinical translation. Clin. Exp. Metastasis 2022 39 2 263 277 10.1007/s10585‑021‑10144‑5 35072851
    [Google Scholar]
  51. Ruiz-Espigares J. Nieto D. Moroni L. Jiménez G. Marchal J.A. Evolution of metastasis study models toward metastasis-on-a-chip: The ultimate model? Small 2021 17 14 2006009 10.1002/smll.202006009 33705602
    [Google Scholar]
  52. Lu DY. Lu TR. Anti-metastatic drug developments, utility of more animal models. Mathews J. Pharm. Sci. 2022 6 1 11 10.30654/MJPS.10011
    [Google Scholar]
  53. Jelgersma C. Vajkoczy P. How to target spinal metastasis in experimental research: An overview of currently used experimental mouse model and future prospects. Int. J. Mol. Sci. 2021 22 11 5420 10.3390/ijms22115420 34063821
    [Google Scholar]
  54. Munkley J. Scott E. Targeting aberrant sialylation to treat cancer. Medicines (Basel) 2019 6 4 102 10.3390/medicines6040102 31614918
    [Google Scholar]
  55. Chen F. Qi X. Qian M. Dai Y. Sun Y. Tackling the tumor microenvironment: What challenge does it pose to anticancer therapies? Protein Cell 2014 5 11 816 826 10.1007/s13238‑014‑0097‑1 25185441
    [Google Scholar]
  56. Hofbauer L.C. Bozec A. Rauner M. Jakob F. Perner S. Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat. Rev. Clin. Oncol. 2021 18 8 488 505 10.1038/s41571‑021‑00499‑9 33875860
    [Google Scholar]
  57. Montero J. Sarosiek K.A. DeAngelo J.D. Maertens O. Ryan J. Ercan D. Piao H. Horowitz N.S. Berkowitz R.S. Matulonis U. Jänne P.A. Amrein P.C. Cichowski K. Drapkin R. Letai A. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell 2015 160 5 977 989 10.1016/j.cell.2015.01.042 25723171
    [Google Scholar]
  58. Eduati F. Utharala R. Madhavan D. Neumann U.P. Longerich T. Cramer T. Saez-Rodriguez J. Merten C.A. A microfluidics platform for combinatorial drug screening on cancer biopsies. Nat. Commun. 2018 9 1 2434 10.1038/s41467‑018‑04919‑w 29934552
    [Google Scholar]
  59. Liang S. Willis J. Dou J. Mohanty V. Huang Y. Vilar E. Chen K. Sensei: How many samples to tell a change in cell type abundance? BMC Bioinformatics 2022 23 1 2 10.1186/s12859‑021‑04526‑5 34983369
    [Google Scholar]
  60. Liu Z. Li H. Dang Q. Weng S. Duo M. Lv J. Han X. Integrative insights and clinical applications of single-cell sequencing in cancer immunotherapy. Cell. Mol. Life Sci. 2022 79 11 577 10.1007/s00018‑022‑04608‑4 36316529
    [Google Scholar]
  61. Blau A. Brown A. Mahanta L. Amr S. The translational genomic core at partners personalized medicine: facilitating the transition of research towards personalized medicine. J. Pers. Med. 2016 6 1 10 10.3390/jpm6010010 26927185
    [Google Scholar]
  62. Xu Z. Gao Y. Hao Y. Li E. Wang Y. Zhang J. Wang W. Gao Z. Wang Q. Application of a microfluidic chip-based 3D co-culture to test drug sensitivity for individualized treatment of lung cancer. Biomaterials 2013 34 16 4109 4117 10.1016/j.biomaterials.2013.02.045 23473962
    [Google Scholar]
  63. Cui H. Wang X. Wesslowski J. Tronser T. Rosenbauer J. Schug A. Davidson G. Popova A.A. Levkin P.A. Assembly of multi-sphoroid cellular architectures by programmable droplet merging. Adv. Mater. 2021 33 4 2006434 10.1002/adma.202006434 33325613
    [Google Scholar]
  64. Rosenfeld A. Göckler T. Kuzina M. Reischl M. Schepers U. Levkin P.A. Designing inherently photodegradable cell-adhesive hydrogels for 3D cell culture. Adv. Healthc. Mater. 2021 10 16 2100632 10.1002/adhm.202100632 34111332
    [Google Scholar]
  65. Sontheimer-Phelps A. Hassell B.A. Ingber D.E. Modelling cancer in microfluidic human organs-on-chips. Nat. Rev. Cancer 2019 19 2 65 81 10.1038/s41568‑018‑0104‑6 30647431
    [Google Scholar]
  66. Zhang Y. Xu J. Yu Y. Shang W. Ye A. Anticancer drug sensitivity assay with quantitative heterogeneity testing using single-cell Raman Spectroscope. Molecules 2018 23 11 2903 10.3390/molecules23112903 30405051
    [Google Scholar]
  67. Lu D.Y. Lu T.R. Yarla N.S. Xu B. Drug sensitivity testing for cancer therapy, key areas. Rev. Recent Clin. Trials 2022 17 4 291 299 10.2174/1574887117666220819094528 35986532
    [Google Scholar]
  68. Lu D.Y. Lu T.R. Drug sensitivity testing for cancer therapy, technique analysis and trend. Curr. Rev. Clin. Exp. Pharmacol. 2023 18 1 3 11 10.2174/2772432816666210910104649 34515020
    [Google Scholar]
  69. Wang J. Lin K. Hu H. Qie X. Huang W.E. Cui Z. Gong Y. Song Y. In vitro anticancer drug sensitivity sensing through single-cell Raman Spectroscopy. Biosensors (Basel) 2021 11 8 286 10.3390/bios11080286 34436088
    [Google Scholar]
  70. Hammoud M.K. Yosef H.K. Lechtonen T. Aljakouch K. Schuler M. Alsaidi W. Daho I. Maghnouj A. Hahn S. El-Mashtoly S.F. Gerwert K. Raman micro-spectroscopy monitors acquired resistance to targeted cancer therapy at the cellular level. Sci. Rep. 2018 8 1 15278 10.1038/s41598‑018‑33682‑7 30323297
    [Google Scholar]
  71. Lu D.Y. Lu T.R. Anti-metastatic drug development, overview and perspectives. Hos. Pal. Med. Int. J. 2023 6 2 45 51 10.15406/hpmij.2023.06.00217
    [Google Scholar]
  72. Eslami-S Z. Cortés-Hernández L.E. Thomas F. Pantel K. Alix-Panabières C. Functional analysis of circulating tumour cells: The KEY to understand the biology of the metastatic cascade. Br. J. Cancer 2022 127 5 800 810 10.1038/s41416‑022‑01819‑1 35484215
    [Google Scholar]
  73. Pantel K. Alix-Panabières C. Crucial roles of circulating tumor cells in the metastatic cascade and tumor immune escape: Biology and clinical translation. J. Immunother. Cancer 2022 10 12 e005615 10.1136/jitc‑2022‑005615 36517082
    [Google Scholar]
  74. Litak J. Czyżewski W. Szymoniuk M. Sakwa L. Pasierb B. Litak J. Hoffman Z. Kamieniak P. Roliński J. Biological and clinical aspects of metastatic spinal tumors. Cancers (Basel) 2022 14 19 4599 10.3390/cancers14194599 36230523
    [Google Scholar]
  75. Lee S.H. Choi Y. Communication between the skeletal and immune systems. Osteoporos. Sarcopenia 2015 1 2 81 91 10.1016/j.afos.2015.09.004
    [Google Scholar]
  76. Lu J. Hu D. Zhang Y. Ma C. Shen L. Shuai B. Current comprehensive understanding of denosumab (the RANKL neutralizing antibody) in the treatment of bone metastasis of malignant tumors, including pharmacological mechanism and clinical trials. Front. Oncol. 2023 13 1133828 10.3389/fonc.2023.1133828 36860316
    [Google Scholar]
  77. Lu D.Y. Xu B. Cancer bone metastasis, experimental study. Acta Scientific Orthopeadics 2022 5 12 1 3
    [Google Scholar]
  78. Lu D.Y. Xu B. Bone cancer and metastatic trials, drug treatment. Acta Sci. Orthop. 2021 4 9 31 33 10.31080/ASOR.2021.04.0355
    [Google Scholar]
  79. Ali I. Saleem K. Uddin R. Haque A. El-Azzouny A. Natural products: Human friendly anti-cancer medications. Egypt Pharm J 2010 9 2 133 179 [NRC].
    [Google Scholar]
  80. Lu D.Y. Lu T.R. Lu Y. Yarla N. Wu H.Y. Discover natural chemical drugs in modern medicines. Metabolomics 2016 6 3 181
    [Google Scholar]
  81. Putta S. Yarla N.S. Peluso I. Tiwari D.K. Reddy G.V. Girl P.V. Kumar N. Malia R. Chari V.B. Reddy R.D. Bade R. Barretto G. Lu D.Y. Tarasov V.V. Chubarev V.M. Ribeiro F.F. Scotti L. Scotti L. Scotti M.T. Kamal M.A. Aliev G. Rao C.V. Perry G. Bishayee A. Anthocyanins: Possible role as multitarget therapeutic agents for prevention and therapy of chronic diseases. Curr. Pharm. Des. 2017 23 30 4475 4483 28831925
    [Google Scholar]
  82. Lu D.Y. Lu T.R. Yarla N.S. Lu Y. Che J.Y. Ding J. Xu B. Zhu H. Shen Y. Wu H.Y. Natural drug cancer treatments, strategies from herbal medicine to chemical or biological drugs. Stud. Nat. Prod. Chem. 2020 66 91 115 10.1016/B978‑0‑12‑817907‑9.00004‑0
    [Google Scholar]
  83. Jia S. Shen M. Zhang F. Xie J. Recent advances in Momordica charantia: functional components and biological activities. Int. J. Mol. Sci. 2017 18 12 2555 10.3390/ijms18122555 29182587
    [Google Scholar]
  84. Lebuan U.Y. Kembaren R.F. Martgrita M.M. Kholibrina C.R. Thrombolytic protease characterization from leaves and fruit flesh of the jernang rattan plant (Daemonorops draco). Indones. J. Biotechnol. 2023 28 4 248 253 10.22146/ijbiotech.82390
    [Google Scholar]
  85. Lu D.Y. Lu T.R. Herbal medicine in new era. Hos. Pal. Med. Int. J. 2019 3 4 125 130 10.15406/hpmij.2019.03.00165
    [Google Scholar]
  86. Lu D.Y. Lu T.R. Drug discoveries from natural resources. J. Prim. Health Care Gen. Pract. 2019 3 1 28
    [Google Scholar]
  87. Agarwal N. Majee C. Chakraborthy G.S. Natural herbs as anticancer drugs. Int. J. Pharm. Tech. Res. 2012 4 3 1142 1153
    [Google Scholar]
  88. Pattanayak S. Plants in healthcare: Past, present and future. Explor. Anim. Med. Res. 2021 11 2 140 144 10.52635/EAMR/11.2.140‑144
    [Google Scholar]
  89. Pattanayak S. Anti-cancer plants and their therapeutic use as succulent biomedicine capsules. Explor. Anim. Med. Res. 2023 13 Ethnomedicine Special 01 50 10.52635/eamr/13(S)01‑50
    [Google Scholar]
  90. Gupta S.C. Sung B. Prasad S. Webb L.J. Aggarwal B.B. Cancer drug discovery by repurposing: Teaching new tricks to old dogs. Trends Pharmacol. Sci. 2013 34 9 508 517 10.1016/j.tips.2013.06.005 23928289
    [Google Scholar]
  91. Suares A. Medina M.V. Coso O. Autophagy in viral development and progression of cancer. Front. Oncol. 2021 11 603224 10.3389/fonc.2021.603224 33763351
    [Google Scholar]
  92. Di Sotto A. Mancinelli R. Gullì M. Eufemi M. Mammola C.L. Mazzanti G. Di Giacomo S. Chemopreventive potential of caryophyllane sesquiterpenes—An overview preliminary evidence. Cancers (Basel) 2020 12 10 3034 10.3390/cancers12103034 33081075
    [Google Scholar]
  93. Pantano F. Croset M. Driouch K. Bednarz-Knoll N. Iuliani M. Ribelli G. Bonnelye E. Wikman H. Geraci S. Bonin F. Simonetti S. Vincenzi B. Hong S.S. Sousa S. Pantel K. Tonini G. Santini D. Clézardin P. Integrin alpha5 in human breast cancer is a mediator of bone metastasis and a therapeutic target for the treatment of osteolytic lesions. Oncogene 2021 40 7 1284 1299 10.1038/s41388‑020‑01603‑6 33420367
    [Google Scholar]
  94. Hernández-Balmaseda I. Guerra I.R. Declerck K. Herrera Isidrón J.A. Pérez-Novo C. Van Camp G. De Wever O. González K. Labrada M. Carr A. Dantas-Cassali G. dos Reis D.C. Delgado-Roche L. Nuñez R.R. Delgado-Hernández R. Fernández M.D. Paz-Lopes M.T. Vanden Berghe W. Marine seagrass extract of Thalassia testudinum suppresses colorectal tumor growth, motility and angiogenesis by autophagic stress and immunogenic cell death pathways. Mar. Drugs 2021 19 2 52 10.3390/md19020052 33499163
    [Google Scholar]
  95. Zou Y. Henry W.S. Ricq E.L. Graham E.T. Phadnis V.V. Maretich P. Paradkar S. Boehnke N. Deik A.A. Reinhardt F. Eaton J.K. Ferguson B. Wang W. Fairman J. Keys H.R. Dančík V. Clish C.B. Clemons P.A. Hammond P.T. Boyer L.A. Weinberg R.A. Schreiber S.L. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020 585 7826 603 608 10.1038/s41586‑020‑2732‑8 32939090
    [Google Scholar]
  96. Ali I. Saleem K. Wesselinova D. Haque A. Synthesis, DNA binding, hemolytic, and anticancer assays of curcumin I-based ligands and their ruthenium complex (potential treatment of (III) cervical cancer. Med. Chem. Res. 2013 22 3 1386 1398 10.1007/s00044‑012‑0133‑8
    [Google Scholar]
  97. Emran T.B. Shahriar A. Mahmud A.R. Rahman T. Abir M.H. Siddiquee M.F.R. Ahmed H. Rahman N. Nainu F. Wahyudin E. Mitra S. Dhama K. Habiballah M.M. Haque S. Islam A. Hassan M.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 2022 12 891652 10.3389/fonc.2022.891652 35814435
    [Google Scholar]
  98. Dianat-Moghadam H. Mahari A. Salahlou R. Khalili M. Azizi M. Sadeghzadeh H. Immune evader cancer stem cells direct the perspective approaches to cancer immunotherapy. Stem Cell Res. Ther. 2022 13 1 150 10.1186/s13287‑022‑02829‑9 35395787
    [Google Scholar]
  99. Mortaki D. Gkegkes I.D. Psomiadou V. Blontzos N. Prodromidou A. Lefkopoulos F. Nicolaidou E. Vaginal microbiota and human papillomavirus: A systematic review. J. Turk. Ger. Gynecol. Assoc. 2020 21 3 193 200 10.4274/jtgga.galenos.2019.2019.0051 31564082
    [Google Scholar]
  100. Mitra A. Gultekin M. Ellis L.B. Bizzari N. Bowden S. Taumberger N. Bracic T. Vieira-Baptista P. Sehouli J. Kyrgiou M. Genital tract microbiota composition profiles and use of prebiotics and probiotics in gynaecological cancer prevention: Review of the current evidence, the European Society of Gynaecological Oncology Prevention Committee Statement. Lancet Microbe 2023 23 00257 4 10.1016/52666‑5247 38141634
    [Google Scholar]
  101. Suraya R. Nagano T. Kobayashi K. Nishimura Y. Microbiome as a target for cancer therapy. Integr. Cancer Ther. 2020 19 10.1177/1534735420920721 32564632
    [Google Scholar]
  102. Malaviya A. Paari K.A. Malviya S. Kondapalli V. Ghosh A. Samuel R.A. Gut microbiota and cancer correlates. Probiotic Research in Therapeutics Springer Singapore 2020 1 27 10.1007/978‑981‑15‑8214‑1_1
    [Google Scholar]
  103. Alsannan B. Upadhyay A. Raman V.V. Singh J.B. Roj A. Haridas K. Obesity and its associated cancer related risk with gynaecology. J. Coast. Life Med. 2023 1 11 689 695
    [Google Scholar]
  104. Hollingshead M.G. Greenberg N. Gottholm-Ahalt M. Camalier R. Johnson B.C. Collins J.M. Doroshow J.H. ROADMAPS: An online database of response data, dosing regimens, and toxicities of approved oncology drugs as single agents to guide preclinical in vivo studies. Cancer Res. 2022 82 12 2219 2225 10.1158/0008‑5472.CAN‑21‑4151 35472132
    [Google Scholar]
  105. Lee J. Kim Y. Jin S. Yoo H. Jeong S. Jeong E. Yoon S. Q-omics: smart software for assisting oncology and cancer research. Mol. Cells 2021 44 11 843 850 10.14348/molcells.2021.0169 34819397
    [Google Scholar]
  106. Masilamani K. Senthilnathan B. Manoyogambiga M. Gowri R. Vigneshwar M. Sathiyasundar R. Rajaganapathy K. Techniques and tools for in silico drug design for the development of anticancer drugs. Int. J. Life Sci. Pharma Res. 2023 13 5 130 148 10.22376/ijlpr.2023.13.5.P130‑P148
    [Google Scholar]
  107. Muthuraman A. Thiagarajan U.R.K. Paramakrishman N. Integration of artificial intelligence in pharmacological research with deep and machine learning process. EC Pharmacol. Toxicol. 2019 7 11 56 61
    [Google Scholar]
  108. Freedman D.H. Hunting for new drugs with AI. Nature 2019 576 7787 S49 S53 10.1038/d41586‑019‑03846‑0 31853074
    [Google Scholar]
  109. Cui W. Aouidate A. Wang S. Yu Q. Li Y. Yuan S. Discovering anticancer drugs via computational methods. Front. Pharmacol. 2020 11 11 733 10.3389/fphar.2020.00733 32508653
    [Google Scholar]
  110. Knudsen L. Brandenberger C. Ochs M. Stereology as the 3D tool to quantitate lung architecture. Histochem. Cell Biol. 2021 155 2 163 181 10.1007/s00418‑020‑01927‑0 33051774
    [Google Scholar]
  111. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  112. Franssen L.C. Lorenzi T. Burgess A.E.F. Chaplain M.A.J. A mathematical framework for modeling the metastatic spread of cancer. Bull. Math. Biol. 2019 81 6 1965 2010 10.1007/s11538‑019‑00597‑x 30903592
    [Google Scholar]
  113. Anvari S. Nambiar S. Pang J. Maftoon N. Computational models and simulations of cancer metastasis. Arch. Comput. Methods Eng. 2021 28 7 4837 4859 10.1007/s11831‑021‑09554‑1
    [Google Scholar]
  114. Gerlee P. Johansson M. Inferring rates of metastatic dissemination using stochastic network models. PLOS Comput. Biol. 2019 15 4 e1006868 10.1371/journal.pcbi.1006868 30933969
    [Google Scholar]
  115. Lu D.Y. Lu T.R. Lu Y. Wu H.Y. Yarla N.S. The acquisition of mathematical language in biomedical articles. J. Cell Developmental Biol. 2017 1 1 8
    [Google Scholar]
  116. Chen S. Jiang W. Du Y. Yang M. Pan Y. Li H. Cui M. Single-cell analysis technologies for cancer research: from tumor-specific single cell discovery to cancer therapy. Front. Genet. 2023 14 1276959 10.3389/fgene.2023.1276959 37900181
    [Google Scholar]
  117. Lu D.Y. Chen E.H. Wu H.Y. Lu T.R. Xu B. Ding J. Anticancer drug combination, how far we can go through? Anticancer. Agents Med. Chem. 2017 17 1 21 28 10.2174/1871520616666160404112028 27039923
    [Google Scholar]
  118. Lu D.Y. Lu T.R. Yarla N.S. Wu H.Y. Xu B. Ding J. Zhu H. Drug combination in clinical cancer treatment. Rev. Recent Clin. Trials 2017 12 3 202 211 28782482
    [Google Scholar]
  119. Lu D.Y. Lu T.R. Xu B. Ding J. Yi L. Yarla N.S. Perspectives of personalized cancer therapy. Adv. Biotechnol. Microbiol. 2017 4 3 555637 10.19080/AIBM.2017.04.555638
    [Google Scholar]
  120. Lu D.Y. Personalized Cancer Chemotherapy: An Effective Way of Enhancing Outcomes in Clinics UK Woodhead Publishing, Elsevier 1st ed 2014
    [Google Scholar]
  121. Lu D.Y. Lu T.R. Xu B. Che J-Y. Shen Y. Yarla N.S. Individualized cancer therapy, future approaches. Curr. Pharmacogenomics Person. Med. 2018 16 2 156 163 10.2174/1875692116666180821095434
    [Google Scholar]
  122. Lu D.Y. Lu T.R. Che J.Y. Yarla N.S. Individualized cancer therapy, what is the next generation? EC Cancer 2018 2 6 286 297
    [Google Scholar]
  123. Ali I. Nano drugs: novel agents for cancer chemotherapy. Curr. Cancer Drug Targets 2011 11 2 131 134 10.2174/156800911794328457 21062238
    [Google Scholar]
  124. Gauro R. Nandave M. Jain V.K. Jain K. Advances in dendrimer-mediated targeted drug delivery to the brain. J. Nanopart. Res. 2021 23 3 76 10.1007/s11051‑021‑05175‑8
    [Google Scholar]
  125. Mukhtar M. Bilal M. Rahdar A. Barani M. Arshad R. Behl T. Brisc C. Banica F. Bungau S. Nanomaterials for diagnosis and treatment of brain cancer: Recent update. Chemosensors (Basel) 2020 8 4 117 10.3390/chemosensors8040117
    [Google Scholar]
  126. Reig-Vano B. Tylkowski B. Montané X. Giamberini M. Alginate-based hydrogels for cancer therapy and research. Int. J. Biol. Macromol. 2021 170 424 436 10.1016/j.ijbiomac.2020.12.161 33383080
    [Google Scholar]
  127. Sharifi-Rad J. Quispe C. Butnariu M. Rotariu L.S. Sytar O. Sestito S. Rapposelli S. Akram M. Iqbal M. Krishna A. Kumar N.V.A. Braga S.S. Cardoso S.M. Jafernik K. Ekiert H. Cruz-Martins N. Szopa A. Villagran M. Mardones L. Martorell M. Docea A.O. Calina D. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021 21 1 318 10.1186/s12935‑021‑02025‑4 34167552
    [Google Scholar]
  128. Jain V. Kumar H. Anod H.V. Chand P. Gupta N.V. Dey S. Kesharwani S.S. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J. Control. Release 2020 326 628 647 10.1016/j.jconrel.2020.07.003 32653502
    [Google Scholar]
  129. May M. Why drug delivery is the key to new medicines. Nat. Med. 2022 28 6 1100 1102 10.1038/s41591‑022‑01826‑y 35668179
    [Google Scholar]
  130. Lu D.Y. Lu Y. Several approaches for anticancer drug development progress. Nurs. Care Open Access J. 2022 8 3 85 86 10.15406/ncoaj.2022.08.00244
    [Google Scholar]
  131. Lu D.Y. Lu T.R. Chen E.H. Sastry Yarla N. Xu B. Ding J. Huang M. Zhu H. Keep up the pace of drug development evolution and expenditure. Cancer Rep. Rev. 2018 2 5 165 10.15761/CRR.1000165
    [Google Scholar]
/content/journals/csci/10.2174/0127726215312620241029102421
Loading
/content/journals/csci/10.2174/0127726215312620241029102421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test