Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Rheumatoid arthritis is a systemic autoimmune disorder related to joint inflammation, bone erosion, and deformity. Numerous studies indicate that the causes and consequences of RA are still being debated, and therapeutic strategies are in the translation stage. Non-steroidal anti-inflammatory drugs continue to be often used to relieve pain. Still, due to their poor efficacy, failure to halt the spread of the disease, and undesirable adverse effects, they are no longer regarded as first-line treatments. The development of biologic DMRDs designed to reduce the inflammatory response led to substantial changes to the strategy for managing this disease. Although biologic DMRDs have made significant strides in the management of Rheumatoid arthritis, certain patients' lack of response to biological approaches and therapy cessation due to systemic toxicity are unresolved problems. Therefore, to improve the effect and reduce systemic adverse effects, new approaches are needed to proactively target and transport therapeutic molecules to target sites. The intriguing method of nanotechnology enables the encapsulation of drugs to prevent their deterioration and systemic adverse effects. The next generation of Rheumatoid arthritis therapies might be based on advances in nanomaterial-based drug delivery, Trojan horse, and antibody targeting approaches. This article presents an overview of the advancements in Rheumatoid arthritis therapy, ranging from traditional methods to recent cutting-edge, ongoing pre-clinical and clinical approaches.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971288433240408062359
2024-04-15
2025-05-21
Loading full text...

Full text loading...

References

  1. BullockJ. RizviS.A.A. SalehA.M. AhmedS.S. DoD.P. AnsariR.A. AhmedJ. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/00049339030173215
    [Google Scholar]
  2. PettyR.E. SouthwoodT.R. MannersP. BaumJ. GlassD.N. GoldenbergJ. HeX. Maldonado-CoccoJ. Orozco-AlcalaJ. PrieurA.M. Suarez-AlmazorM.E. WooP. International league of associations for rheumatology classification of juvenile idiopathic arthritis: Second revision, Edmonton, 2001.J. Rheumatol.200431239039214760812
    [Google Scholar]
  3. PradeepkiranJ.A. Insights of rheumatoid arthritis risk factors and associations.J. Transl. Autoimmun.2019210001210.1016/j.jtauto.2019.10001232743500
    [Google Scholar]
  4. JiangX. AlfredssonL. Modifiable environmental exposure and risk of Rheumatoid arthritis—current evidence from genetic studies.Arthritis Res. Ther.202022115410.1186/s13075‑020‑02253‑532571398
    [Google Scholar]
  5. MachoL. RovenskýJ. RádikováZ. ImrichR. GreguskaO. VigasM. Levels of hormones in plasma and in synovial fluid of knee joint of patients with Rheumatoid arthritis.Cas. Lek. Cesk.2007146329229617419316
    [Google Scholar]
  6. HanR. Self-therapeutic metal-based nanoparticles for treating inflammatory diseases.Acta Pharm. Sin. B20221351847186537250153
    [Google Scholar]
  7. AlmutairiK. NossentJ. PreenD. KeenH. InderjeethC. The global prevalence of Rheumatoid arthritis: A meta-analysis based on a systematic review.Rheumatol. Int.202141586387710.1007/s00296‑020‑04731‑033175207
    [Google Scholar]
  8. DingQ. HuW. WangR. YangQ. ZhuM. LiM. CaiJ. RoseP. MaoJ. ZhuY.Z. Signaling pathways in Rheumatoid arthritis: Implications for targeted therapy.Signal Transduct. Target. Ther.2023816810.1038/s41392‑023‑01331‑936797236
    [Google Scholar]
  9. PhamC.T.N. Nanotherapeutic approaches for the treatment of Rheumatoid arthritis.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20113660761910.1002/wnan.15721837725
    [Google Scholar]
  10. YapH.Y. TeeS. WongM. ChowS.K. PehS.C. TeowS.Y. Pathogenic role of immune cells in Rheumatoid arthritis: Implications in clinical treatment and biomarker development.Cells201871016110.3390/cells710016130304822
    [Google Scholar]
  11. KöhlerB.M. GüntherJ. KaudewitzD. LorenzH.M. Current therapeutic options in the treatment of Rheumatoid arthritis.J. Clin. Med.20198793810.3390/jcm807093831261785
    [Google Scholar]
  12. SmolenJ.S. SteinerG. Therapeutic strategies for Rheumatoid arthritis.Nat. Rev. Drug Discov.20032647348810.1038/nrd110912776222
    [Google Scholar]
  13. JinS. ZhaoJ. LiM. ZengX. New insights into the pathogenesis and management of Rheumatoid arthritis.Chronic Dis. Transl. Med.20228425626310.1002/cdt3.4336420174
    [Google Scholar]
  14. ShamsS. MartinezJ.M. DawsonJ.R.D. FloresJ. GabrielM. GarciaG. GuevaraA. MurrayK. PacificiN. VargasM.V. VoelkerT. HellJ.W. AshouriJ.F. The therapeutic landscape of Rheumatoid arthritis: Current state and future directions.Front. Pharmacol.20211268004310.3389/fphar.2021.68004334122106
    [Google Scholar]
  15. WeinblattM.E. Methotrexate: Who would have predicted its importance in Rheumatoid arthritis?Arthritis Res. Ther.201820110310.1186/s13075‑018‑1599‑729848356
    [Google Scholar]
  16. Kabat-ZinnJ. An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: Theoretical considerations and preliminary results.Gen. Hosp. Psychiatry198241334710.1016/0163‑8343(82)90026‑37042457
    [Google Scholar]
  17. SoekenK.L. MillerS.A. ErnstE. Herbal medicines for the treatment of Rheumatoid arthritis: A systematic review.Br. J. Rheumatol.200342565265910.1093/rheumatology/keg18312709541
    [Google Scholar]
  18. WeinblattM.E. Methotrexate in Rheumatoid arthritis: A quarter century of development.Trans. Am. Clin. Climatol. Assoc.2013124162523874006
    [Google Scholar]
  19. Santos-MorenoP.I. de la Hoz-ValleJ. VillarrealL. PalominoA. SánchezG. CastroC. Treatment of Rheumatoid arthritis with methotrexate alone and in combination with other conventional DMARDs using the T2T strategy. A cohort study.Clin. Rheumatol.201534221522010.1007/s10067‑014‑2794‑925318612
    [Google Scholar]
  20. JurgensM.S. JacobsJ.W.G. BijlsmaJ.W.J. The use of conventional disease-modifying anti-rheumatic drugs in established RA.Best Pract. Res. Clin. Rheumatol.201125452353310.1016/j.berh.2011.10.00622137922
    [Google Scholar]
  21. VivarN. Van VollenhovenR.F. Advances in the treatment of Rheumatoid arthritis.F1000Prime Rep.201463110.12703/P6‑3124860653
    [Google Scholar]
  22. KamedaH. NishidaK. NankiT. WatanabeA. OshimaY. MomoharaS. Safety and effectiveness of certolizumab pegol in Japanese patients with Rheumatoid arthritis: Results from a 24-week post- marketing surveillance study.Mod. Rheumatol.202333346047110.1093/mr/roac07335822806
    [Google Scholar]
  23. JabadoO. MaldonadoM.A. SchiffM. WeinblattM.E. FleischmannR. RobinsonW.H. HeA. PatelV. GreenfieldA. SainiJ. GalbraithD. ConnollyS.E. Differential changes in ACPA fine specificity and gene expression in a randomized trial of abatacept and adalimumab in Rheumatoid arthritis.Rheumatol. Ther.20229239140910.1007/s40744‑021‑00404‑x34878629
    [Google Scholar]
  24. BonelliM. GöschlL. BlümlS. KaronitschT. HiraharaK. FernerE. SteinerC.W. SteinerG. SmolenJ.S. ScheineckerC. Abatacept (CTLA-4Ig) treatment reduces T cell apoptosis and regulatory T cell suppression in patients with Rheumatoid arthritis.Rheumatology (Oxford)201655471072010.1093/rheumatology/kev40326672908
    [Google Scholar]
  25. BuchM.H. VitalE.M. EmeryP. Abatacept in the treatment of Rheumatoid arthritis.Arthritis Res. Ther.200810Suppl 1S510.1186/ar241619007425
    [Google Scholar]
  26. MutohT. NagaiT. ShiraiT. OkazakiS. SatoH. FujiiH. Predictive factors for retention of golimumab over a median 4-year duration in Japanese patients with Rheumatoid arthritis in a real-world setting: A retrospective study and literature review.Int. J. Rheum. Dis.202225333534310.1111/1756‑185X.1428134989482
    [Google Scholar]
  27. IkonomidisI. LekakisJ.P. NikolaouM. ParaskevaidisI. AndreadouI. KaplanoglouT. KatsimbriP. SkarantavosG. SoucacosP.N. KremastinosD.T. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with Rheumatoid arthritis.Circulation2008117202662266910.1161/CIRCULATIONAHA.107.73187718474811
    [Google Scholar]
  28. ZwerinaJ. RedlichK. SchettG. SmolenJ.S. Pathogenesis of Rheumatoid arthritis: Targeting cytokines.Ann. N. Y. Acad. Sci.20051051171672910.1196/annals.1361.11616127012
    [Google Scholar]
  29. MainiR. St ClairE.W. BreedveldF. FurstD. KaldenJ. WeismanM. SmolenJ. EmeryP. HarrimanG. FeldmannM. LipskyP. Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in Rheumatoid arthritis patients receiving concomitant methotrexate: A randomised phase III trial.Lancet199935491941932193910.1016/S0140‑6736(99)05246‑010622295
    [Google Scholar]
  30. CombeB. AllanoreY. AltenR. CaporaliR. DurezP. IannoneF. NurmohamedM.T. ToumiM. LeeS.J. KwonT.S. NohJ. ParkG. YooD.H. Comparative efficacy of subcutaneous (CT-P13) and intravenous infliximab in adult patients with Rheumatoid arthritis: A network meta-regression of individual patient data from two randomised trials.Arthritis Res. Ther.202123111910.1186/s13075‑021‑02487‑x33863352
    [Google Scholar]
  31. IlleiG.G. ShirotaY. YarboroC.H. DaruwallaJ. TackeyE. TakadaK. FleisherT. BalowJ.E. LipskyP.E. Tocilizumab in systemic lupus erythematosus: Data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study.Arthritis Rheum.201062254255210.1002/art.2722120112381
    [Google Scholar]
  32. JordanS.C. AmmermanN. HuangE. VoA. Importance of IL-6 inhibition in prevention and treatment of antibody-mediated rejection in kidney allografts.Am. J. Transplant.202222283710.1111/ajt.1720736453709
    [Google Scholar]
  33. TobinR.P. JordanK.R. KapoorP. SpongbergE. DavisD. VorwaldV.M. CoutsK.L. GaoD. SmithD.E. BorgersJ.S.W. RobinsonS. AmatoC. GonzalezR. LewisK.D. RobinsonW.A. BorgesV.F. McCarterM.D. IL-6 and IL-8 are linked with myeloid-derived suppressor cell accumulation and correlate with poor clinical outcomes in melanoma patients.Front. Oncol.20199122310.3389/fonc.2019.0122331781510
    [Google Scholar]
  34. WeinerG.J. Rituximab: Mechanism of action.Semin. Hematol.201047211512310.1053/j.seminhematol.2010.01.01120350658
    [Google Scholar]
  35. QiF. LiuF. GaoL. Janus kinase inhibitors in the treatment of vitiligo: A review.Front. Immunol.20211279012510.3389/fimmu.2021.79012534868078
    [Google Scholar]
  36. LauxJ. MartorelliM. SpäthN. MaierF. BurnetM. LauferS.A. Selective inhibitors of janus kinase 3 modify responses to lipopolysaccharides by increasing the interleukin-10-to-tumor necrosis factor α ratio.ACS Pharmacol. Transl. Sci.20236689290610.1021/acsptsci.3c0004337325444
    [Google Scholar]
  37. AngeliniJ. TalottaR. RoncatoR. FornasierG. BarbieroG. Dal CinL. BrancatiS. ScaglioneF. JAK-inhibitors for the treatment of Rheumatoid arthritis: A focus on the present and an outlook on the future.Biomolecules2020107100210.3390/biom1007100232635659
    [Google Scholar]
  38. YamaokaK. Janus kinase inhibitors for Rheumatoid arthritis.Curr. Opin. Chem. Biol.201632293310.1016/j.cbpa.2016.03.00626994322
    [Google Scholar]
  39. FriedmanB. CronsteinB. Methotrexate mechanism in treatment of Rheumatoid arthritis.Joint Bone Spine201986330130710.1016/j.jbspin.2018.07.00430081197
    [Google Scholar]
  40. EmeryP. BreedveldF.C. LemmelE.M. KaltwasserJ.P. DawesP.T. GömörB. Van den BoschF. NordströmD. BjørneboeO. DahlR. Hørslev-PetersenK. Rodriguez de la SernaA. MolloyM. TiklyM. OedC. RosenburgR. Loew-FriedrichI. A comparison of the efficacy and safety of leflunomide and methotrexate for the treatment of Rheumatoid arthritis.Rheumatology (Oxford)200039665566510.1093/rheumatology/39.6.65510888712
    [Google Scholar]
  41. SandersS. HarisdangkulV. Leflunomide for the treatment of Rheumatoid arthritis and autoimmunity.Am. J. Med. Sci.2002323419019310.1097/00000441‑200204000‑0000412003373
    [Google Scholar]
  42. RempenaultC. CombeB. BarnetcheT. Gaujoux-VialaC. LukasC. MorelJ. HuaC. Clinical and structural efficacy of hydroxychloroquine in Rheumatoid arthritis: A systematic review.Arthritis Care Res. (Hoboken)2020721364010.1002/acr.2382630629341
    [Google Scholar]
  43. JørgensenA.S. DaugvilaiteV. De FilippoK. BergC. MavriM. Benned-JensenT. JuzenaiteG. HjortøG. RankinS. VåbenøJ. RosenkildeM.M. Biased action of the CXCR4-targeting drug plerixafor is essential for its superior hematopoietic stem cell mobilization.Commun. Biol.20214156910.1038/s42003‑021‑02070‑933980979
    [Google Scholar]
  44. ShahE.E. YoungR.P. WongS.W. DamonL.E. WolfJ.L. ShahN.D. LeavittA.D. LoefflerP. MartinT.G.III Impact of plerixafor use at different peripheral blood CD34+ thresholds on autologous stem cell collection in patients with multiple myeloma.Biol. Blood Marrow Transplant.202026587688310.1016/j.bbmt.2019.11.02431785375
    [Google Scholar]
  45. FraenkelL. BathonJ.M. EnglandB.R. St ClairE.W. ArayssiT. CarandangK. DeaneK.D. GenoveseM. HustonK.K. KerrG. KremerJ. NakamuraM.C. RussellL.A. SinghJ.A. SmithB.J. SparksJ.A. VenkatachalamS. WeinblattM.E. Al-GibbawiM. BakerJ.F. BarbourK.E. BartonJ.L. CappelliL. ChamseddineF. GeorgeM. JohnsonS.R. KahaleL. KaramB.S. KhamisA.M. Navarro-MillánI. MirzaR. SchwabP. SinghN. TurgunbaevM. TurnerA.S. YaacoubS. AklE.A. 2021 american college of rheumatology guideline for the treatment of Rheumatoid arthritis.Arthritis Care Res. (Hoboken)202173792493910.1002/acr.2459634101387
    [Google Scholar]
  46. XieP. XueW. QiW. LiY. YangL. YangZ. ShiA. Safety, tolerability, and pharmacokinetics of ibuprofenamine hydrochloride spray (NSAIDs), a new drug for Rheumatoid arthritis and osteoarthritis, in healthy Chinese subjects.Drug Des. Devel. Ther.20211562963810.2147/DDDT.S29484933628011
    [Google Scholar]
  47. KnevelR. SchoelsM. HuizingaT.W.J. AletahaD. BurmesterG.R. CombeB. LandewéR.B. SmolenJ.S. SokkaT. van der HeijdeD.M F M. Current evidence for a strategic approach to the management of Rheumatoid arthritis with disease-modifying antirheumatic drugs: A systematic literature review informing the EULAR recommendations for the management of Rheumatoid arthritis.Ann. Rheum. Dis.201069698799410.1136/ard.2009.12674820448280
    [Google Scholar]
  48. RomãoV.C. FonsecaJ.E. Etiology and risk factors for Rheumatoid arthritis: A state-of-the-art review.Front. Med. (Lausanne)2021868969810.3389/fmed.2021.68969834901047
    [Google Scholar]
  49. MitomaH. HoriuchiT. TsukamotoH. UedaN. Molecular mechanisms of action of anti-TNF-α agents – Comparison among therapeutic TNF-α antagonists.Cytokine2018101566310.1016/j.cyto.2016.08.01427567553
    [Google Scholar]
  50. KeystoneE.C. SchiffM.H. KremerJ.M. KafkaS. LovyM. DeVriesT. BurgeD.J. Once-weekly administration of 50 mg etanercept in patients with active Rheumatoid arthritis: Results of a multicenter, randomized, double-blind, placebo-controlled trial.Arthritis Rheum.200450235336310.1002/art.2001914872476
    [Google Scholar]
  51. AtiqiS. HooijbergF. LoeffF.C. RispensT. WolbinkG.J. Immunogenicity of TNF-Inhibitors.Front. Immunol.20201131210.3389/fimmu.2020.0031232174918
    [Google Scholar]
  52. SubediS. GongY. ChenY. ShiY. Infliximab and biosimilar infliximab in psoriasis: efficacy, loss of efficacy, and adverse events.Drug Des. Devel. Ther.2019132491250210.2147/DDDT.S20014731413544
    [Google Scholar]
  53. RamírezJ. CañeteJ.D. Anakinra for the treatment of Rheumatoid arthritis: A safety evaluation.Expert Opin. Drug Saf.201817772773210.1080/14740338.2018.148681929883212
    [Google Scholar]
  54. AbbasiM. MousaviM.J. JamalzehiS. AlimohammadiR. BezvanM.H. MohammadiH. AslaniS. Strategies toward Rheumatoid arthritis therapy; the old and the new.J. Cell. Physiol.20192347100181003110.1002/jcp.2786030536757
    [Google Scholar]
  55. AbramsonS.B. AminA. Blocking the effects of IL-1 in Rheumatoid arthritis protects bone and cartilage.Br. J. Rheumatol.200241997298010.1093/rheumatology/41.9.97212209029
    [Google Scholar]
  56. RuscittiP. MaseduF. AlvaroS. AiròP. BattafaranoN. CantariniL. CantatoreF.P. CarlinoG. D’AbroscaV. FrassiM. FredianiB. IaconoD. LiakouliV. MaggioR. MulèR. PantanoI. PreveteI. SinigagliaL. ValentiM. ViapianaO. CiprianiP. GiacomelliR. Anti-interleukin-1 treatment in patients with Rheumatoid arthritis and type 2 diabetes (TRACK): A multicentre, open-label, randomised controlled trial.PLoS Med.2019169e100290110.1371/journal.pmed.100290131513665
    [Google Scholar]
  57. GenoveseM.C. CohenS. MorelandL. LiumD. RobbinsS. NewmarkR. BekkerP. Combination therapy with etanercept and anakinra in the treatment of patients with Rheumatoid arthritis who have been treated unsuccessfully with methotrexate.Arthritis Rheum.20045051412141910.1002/art.2022115146410
    [Google Scholar]
  58. McGeachyM.J. CuaD.J. GaffenS.L. The IL-17 family of cytokines in health and disease.Immunity201950489290610.1016/j.immuni.2019.03.02130995505
    [Google Scholar]
  59. SheppardM. LaskouF. StapletonP.P. HadaviS. DasguptaB. Tocilizumab (Actemra).Hum. Vaccin. Immunother.20171391972198810.1080/21645515.2017.131690928841363
    [Google Scholar]
  60. RaimondoM.G. BiggioggeroM. CrottiC. BeccioliniA. Favallieg Profile of sarilumab and its potential in the treatment of Rheumatoid arthritis.Drug Des. Devel. Ther.2017111593160310.2147/DDDT.S10030228579757
    [Google Scholar]
  61. Pombo-SuarezM. Gomez-ReinoJ.J. Abatacept for the treatment of Rheumatoid arthritis.Expert Rev. Clin. Immunol.201915431932610.1080/1744666X.2019.157964230730220
    [Google Scholar]
  62. MarstonB. PalanichamyA. AnolikJ.H. B cells in the pathogenesis and treatment of Rheumatoid arthritis.Curr. Opin. Rheumatol.201022330731510.1097/BOR.0b013e3283369cb820090526
    [Google Scholar]
  63. WuF. GaoJ. KangJ. WangX. NiuQ. LiuJ. ZhangL. B cells in Rheumatoid arthritis: Pathogenic mechanisms and treatment prospects.Front. Immunol.20211275075310.3389/fimmu.2021.75075334650569
    [Google Scholar]
  64. HughesC.E. NibbsR.J.B. A guide to chemokines and their receptors.FEBS J.2018285162944297110.1111/febs.1446629637711
    [Google Scholar]
  65. LiH. WuM. ZhaoX. Role of chemokine systems in cancer and inflammatory diseases.MedComm202232e14710.1002/mco2.147
    [Google Scholar]
  66. AnsariM.A. NadeemA. BakheetS.A. AttiaS.M. ShahidM. AlyousefF.S. AlswailemM.A. AlqinyahM. AhmadS.F. Chemokine receptor 5 antagonism causes reduction in joint inflammation in a collagen-induced arthritis mouse model.Molecules2021267183910.3390/molecules2607183933805933
    [Google Scholar]
  67. HarringtonR. Al NokhathaS.A. ConwayR. JAK inhibitors in Rheumatoid arthritis: An evidence-based review on the emerging clinical data.J. Inflamm. Res.20201351953110.2147/JIR.S21958632982367
    [Google Scholar]
  68. TanakaY. LuoY. O’SheaJ.J. NakayamadaS. Janus kinase-targeting therapies in rheumatology: A mechanisms-based approach.Nat. Rev. Rheumatol.202218313314510.1038/s41584‑021‑00726‑834987201
    [Google Scholar]
  69. WinthropK.L. CohenS.B. Oral surveillance and JAK inhibitor safety: The theory of relativity.Nat. Rev. Rheumatol.202218530130410.1038/s41584‑022‑00767‑735318462
    [Google Scholar]
  70. GaoF. ChiuS.M. MotanD A L. ZhangZ. ChenL. JiH-L. TseH-F. FuQ-L. LianQ. Mesenchymal stem cells and immunomodulation: Current status and future prospects.Cell Death Dis.201671e2062e206210.1038/cddis.2015.32726794657
    [Google Scholar]
  71. LiuH. LiR. LiuT. YangL. YinG. XieQ. Immunomodulatory effects of mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles in Rheumatoid arthritis.Front. Immunol.202011191210.3389/fimmu.2020.0191232973792
    [Google Scholar]
  72. SongN. ScholtemeijerM. ShahK. Mesenchymal stem cell immunomodulation: Mechanisms and therapeutic potential.Trends Pharmacol. Sci.202041965366410.1016/j.tips.2020.06.00932709406
    [Google Scholar]
  73. ParkE.H. LimH. LeeS. RohK. SeoK.W. KangK.S. ShinK. Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in Rheumatoid arthritis: A phase ia clinical trial.Stem Cells Transl. Med.20187963664210.1002/sctm.18‑003130112846
    [Google Scholar]
  74. SarsenovaM. IssabekovaA. AbishevaS. Rutskaya-MoroshanK. OgayV. SaparovA. Mesenchymal stem cell-based therapy for Rheumatoid arthritis.Int. J. Mol. Sci.202122211159210.3390/ijms22211159234769021
    [Google Scholar]
  75. BehlT. MehtaK. SehgalA. SinghS. SharmaN. AhmadiA. AroraS. BungauS. Exploring the role of polyphenols in Rheumatoid arthritis.Crit. Rev. Food Sci. Nutr.202262195372539310.1080/10408398.2021.192461333998910
    [Google Scholar]
  76. ChristmanL.M. GuL. Efficacy and mechanisms of dietary polyphenols in mitigating Rheumatoid arthritis.J. Funct. Foods20207110400310.1016/j.jff.2020.104003
    [Google Scholar]
  77. LongZ. XiangW. HeQ. XiaoW. WeiH. LiH. GuoH. ChenY. YuanM. YuanX. ZengL. YangK. DengY. HuangZ. Efficacy and safety of dietary polyphenols in Rheumatoid arthritis: A systematic review and meta- analysis of 47 randomized controlled trials.Front. Immunol.202314102412010.3389/fimmu.2023.102412037033930
    [Google Scholar]
  78. JeongM. ParkJ.H. Nanomedicine for the treatment of Rheumatoid arthritis.Mol. Pharm.202118253954910.1021/acs.molpharmaceut.0c0029532502346
    [Google Scholar]
  79. SafiriS. KolahiA.A. HoyD. SmithE. BettampadiD. MansourniaM.A. Almasi-HashianiA. Ashrafi-AsgarabadA. Moradi-LakehM. QorbaniM. CollinsG. WoolfA.D. MarchL. CrossM. Global, regional and national burden of Rheumatoid arthritis 1990–2017: A systematic analysis of the Global Burden of Disease study 2017.Ann. Rheum. Dis.201978111463147110.1136/annrheumdis‑2019‑21592031511227
    [Google Scholar]
  80. MuellerA.L. PayandehZ. MohammadkhaniN. MubarakS.M.H. ZakeriA. Alagheband BahramiA. BrockmuellerA. ShakibaeiM. Recent advances in understanding the pathogenesis of Rheumatoid arthritis: New treatment strategies.Cells20211011301710.3390/cells1011301734831240
    [Google Scholar]
  81. NasraS. BhatiaD. KumarA. Recent advances in nanoparticle-based drug delivery systems for Rheumatoid arthritis treatment.Nanoscale Adv.20224173479349410.1039/D2NA00229A36134349
    [Google Scholar]
  82. LogeshK. RajB. BhaskaranM. ThirumaleshwarS. GangadharappaH.V. OsmaniR.A. Asha SpandanaK.M. Nanoparticulate drug delivery systems for the treatment of Rheumatoid arthritis: A comprehensive review.J. Drug Deliv. Sci. Technol.20238110424110.1016/j.jddst.2023.104241
    [Google Scholar]
  83. BaigN. KammakakamI. FalathW. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges.Mater. Adv.2021261821187110.1039/D0MA00807A
    [Google Scholar]
  84. ZhengM. JiaH. WangH. LiuL. HeZ. ZhangZ. YangW. GaoL. GaoX. GaoF. Application of nanomaterials in the treatment of Rheumatoid arthritis.RSC Advances202111137129713710.1039/D1RA00328C35423287
    [Google Scholar]
  85. RahimizadehP. RezaieyazdiZ. BehzadiF. HajizadeA. LimS.I. Nanotechnology as a promising platform for Rheumatoid arthritis management: Diagnosis, treatment, and treatment monitoring.Int. J. Pharm.202160912113710.1016/j.ijpharm.2021.12113734592396
    [Google Scholar]
  86. LaiP. DaearW. LöbenbergR. PrennerE.J. Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(d,l-lactide-co-glycolic acid) and polyalkylcyanoacrylate.Colloids Surf. B Biointerfaces201411815416310.1016/j.colsurfb.2014.03.01724769392
    [Google Scholar]
  87. LiangW. YuY. LiuZ. MingW. LinH. LongH. ZhaoJ. The therapeutic potential of targeted nanoparticulate systems to treat Rheumatoid arthritis.J. Nanomater.2022202211510.1155/2022/8900658
    [Google Scholar]
  88. Trujillo-NolascoR.M. Morales-AvilaE. Ocampo-GarcíaB.E. Ferro-FloresG. Gibbens-BandalaB.V. Escudero-CastellanosA. Isaac-OliveK. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of Rheumatoid arthritis.Mater. Sci. Eng. C201910310976610.1016/j.msec.2019.10976631349410
    [Google Scholar]
  89. ParkJ.S. YangH.N. JeonS.Y. WooD.G. KimM.S. ParkK.H. The use of anti-COX2 siRNA coated onto PLGA nanoparticles loading dexamethasone in the treatment of Rheumatoid arthritis.Biomaterials201233338600861210.1016/j.biomaterials.2012.08.00822910222
    [Google Scholar]
  90. ZhouY. LiuS. PengH. YuL. HeB. ZhaoQ. In vivo anti-apoptosis activity of novel berberine-loaded chitosan nanoparticles effectively ameliorates osteoarthritis.Int. Immunopharmacol.2015281344310.1016/j.intimp.2015.05.01426002585
    [Google Scholar]
  91. KimM.J. ParkJ.S. LeeS.J. JangJ. ParkJ.S. BackS.H. BahnG. ParkJ.H. KangY.M. KimS.H. KwonI.C. JoD.G. KimK. Notch1 targeting siRNA delivery nanoparticles for Rheumatoid arthritis therapy.J. Control. Release201521614014810.1016/j.jconrel.2015.08.02526282098
    [Google Scholar]
  92. WangQ. LiY. ChenX. JiangH. ZhangZ. SunX. Optimized in vivo performance of acid-liable micelles for the treatment of Rheumatoid arthritis by one single injection.Nano Res.201912242142810.1007/s12274‑018‑2233‑3
    [Google Scholar]
  93. ShiQ. Rondon-CavanzoE.P. Dalla PicolaI.P. TieraM.J. ZhangX. DaiK. BenabdouneH.A. BenderdourM. FernandesJ.C. In vivo therapeutic efficacy of TNFα silencing by folate-PEG-chitosan-DEAE/siRNA nanoparticles in arthritic mice.Int. J. Nanomedicine20181338740210.2147/IJN.S14694229391796
    [Google Scholar]
  94. LeeW. ParkJ. JungS. YangC.W. KimW.U. KimH.Y. ParkJ.H. ParkJ. Preparation and characterization of biodegradable nanoparticles entrapping immunodominant peptide conjugated with PEG for oral tolerance induction.J. Control. Release20051051-2778810.1016/j.jconrel.2005.03.00915919128
    [Google Scholar]
  95. KimS.H. KimJ.H. YouD.G. SaravanakumarG. YoonH.Y. ChoiK.Y. ThambiT. DeepaganV.G. JoD.G. ParkJ.H. Self-assembled dextran sulphate nanoparticles for targeting Rheumatoid arthritis.Chem. Commun. (Camb.)20134988103491035110.1039/C3CC44260H23942894
    [Google Scholar]
  96. LiC. LiH. WangQ. ZhouM. LiM. GongT. ZhangZ. SunX. pH-sensitive polymeric micelles for targeted delivery to inflamed joints.J. Control. Release201724613314110.1016/j.jconrel.2016.12.02728038947
    [Google Scholar]
  97. WilliamsA. GoodfellowR. TopleyN. AmosN. WilliamsB. The suppression of rat collagen-induced arthritis and inhibition of macrophage derived mediator release by liposomal methotrexate formulations.Inflamm. Res.200049415516110.1007/s00011005057510858015
    [Google Scholar]
  98. VanniasingheA.S. ManoliosN. SchibeciS. LakhianiC. Kamali-SarvestaniE. SharmaR. KumarV. MoghaddamM. AliM. BenderV. Targeting fibroblast-like synovial cells at sites of inflammation with peptide targeted liposomes results in inhibition of experimental arthritis.Clin. Immunol.20141511435410.1016/j.clim.2014.01.00524513809
    [Google Scholar]
  99. WuH. HeY. WuH. ZhouM. XuZ. XiongR. YanF. LiuH. Near-infrared fluorescence imaging-guided focused ultrasound-mediated therapy against Rheumatoid arthritis by MTX-ICG-loaded iRGD-modified echogenic liposomes.Theranostics20201022100921010510.7150/thno.4486532929336
    [Google Scholar]
  100. ZhaoY.P. HanJ.F. ZhangF.Y. LiaoT.T. NaR. YuanX.F. HeG. YeW. Flexible nano-liposomes-based transdermal hydrogel for targeted delivery of dexamethasone for Rheumatoid arthritis therapy.Drug Deliv.20222912269228210.1080/10717544.2022.209671835815790
    [Google Scholar]
  101. RenH. HeY. LiangJ. ChengZ. ZhangM. ZhuY. HongC. QinJ. XuX. WangJ. Role of liposome size, surface charge, and pegylation on Rheumatoid arthritis targeting therapy.ACS Appl. Mater. Interfaces20191122203042031510.1021/acsami.8b2269331056910
    [Google Scholar]
  102. Kofoed AndersenC. KhatriS. HansenJ. SlottS. Pavan ParvathaneniR. MendesA.C. ChronakisI.S. HungS.C. RajasekaranN. MaZ. ZhuS. DaiH. MellinsE.D. AstakhovaK. Carbon nanotubes-potent carriers for targeted drug delivery in Rheumatoid arthritis.Pharmaceutics202113445310.3390/pharmaceutics1304045333801590
    [Google Scholar]
  103. VillaM. Jiménez-JorqueraC. HaroI. GomaraM.J. SanmartíR. Fernández-SánchezC. MendozaE. Carbon nanotube composite peptide-based biosensors as putative diagnostic tools for Rheumatoid arthritis.Biosens. Bioelectron.201127111311810.1016/j.bios.2011.06.02621764288
    [Google Scholar]
  104. GuoB. QiaoF. LiaoY. SongL. HeJ. Triptolide laden reduced graphene oxide transdermal hydrogel to manage knee arthritis: In vitro and in vivo studies.J. Biomater. Sci. Polym. Ed.202132101288130010.1080/09205063.2021.191297633797338
    [Google Scholar]
  105. GulzarA. XuJ. YangD. XuL. HeF. GaiS. YangP. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy.Dalton Trans.201847113931393910.1039/C7DT04141A29459928
    [Google Scholar]
  106. ZhangC. ShiD. LiX. YuanJ. Microfluidic electrochemical magnetoimmunosensor for ultrasensitive detection of interleukin-6 based on hybrid of AuNPs and graphene.Talanta202224012317310.1016/j.talanta.2021.12317334999320
    [Google Scholar]
  107. YudohK. KarasawaR. MasukoK. KatoT. Water-soluble fullerene (C60) inhibits the development of arthritis in the rat model of arthritis.Int. J. Nanomedicine2009421722510.2147/IJN.S765319918368
    [Google Scholar]
  108. DellingerA.L. CuninP. LeeD. KungA.L. BrooksD.B. ZhouZ. NigrovicP.A. KepleyC.L. Inhibition of inflammatory arthritis using fullerene nanomaterials.PLoS One2015104e012629010.1371/journal.pone.012629025879437
    [Google Scholar]
  109. DuarteJ.H. Fullerene nanoparticles ameliorate disease in arthritis mouse model.Nat. Rev. Rheumatol.201511631931910.1038/nrrheum.2015.6225939420
    [Google Scholar]
  110. GareevK.G. GrouzdevD.S. KoziaevaV.V. SitkovN.O. GaoH. ZiminaT.M. ShevtsovM. Biomimetic nanomaterials: Diversity, technology, and biomedical applications.Nanomaterials (Basel)20221214248510.3390/nano1214248535889709
    [Google Scholar]
  111. ChenJ. ZengS. XueQ. HongY. LiuL. SongL. FangC. ZhangH. WangB. SedgwickA.C. ZhangP. SesslerJ.L. LiuC. ChenJ. Photoacoustic image-guided biomimetic nanoparticles targeting Rheumatoid arthritis.Proc. Natl. Acad. Sci. USA202211943e221337311910.1073/pnas.221337311936256822
    [Google Scholar]
  112. LiuL. HuF. WangH. WuX. EltahanA.S. StanfordS. BottiniN. XiaoH. BottiniM. GuoW. LiangX.J. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for Rheumatoid arthritis therapy.ACS Nano20191355036504810.1021/acsnano.9b0171030978282
    [Google Scholar]
  113. YanF. ZhongZ. WangY. FengY. MeiZ. LiH. ChenX. CaiL. LiC. Exosome-based biomimetic nanoparticles targeted to inflamed joints for enhanced treatment of Rheumatoid arthritis.J. Nanobiotechnology202018111510.1186/s12951‑020‑00675‑632819405
    [Google Scholar]
  114. StackM.E. MishraS. Parimala Chelvi RatnamaniM. WangH. GoldL.I. WangH. Biomimetic extracellular matrix nanofibers electrospun with calreticulin promote synergistic activity for tissue regeneration.ACS Appl. Mater. Interfaces20221446516835169610.1021/acsami.2c1388736356217
    [Google Scholar]
  115. ZhaoJ. HanW. TuM. HuanS. ZengR. WuH. ChaZ. ZhouC. Preparation and properties of biomimetic porous nanofibrous poly(l-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique.Mater. Sci. Eng. C20123261496150210.1016/j.msec.2012.04.03124364951
    [Google Scholar]
  116. BaceloE. Alves da SilvaM. CunhaC. FariaS. CarvalhoA. ReisR. MartinsA. NevesN. Biofunctional nanofibrous substrate for local TNF-capturing as a strategy to control inflammation in arthritic joints.Nanomaterials (Basel)20199456710.3390/nano904056730965588
    [Google Scholar]
  117. KumarR. Electrocatalysts and energy storage.Biomimetic nanocomposites for biomedical applications, in biorenewable nanocomposite materials1American Chemical Society2022163196
    [Google Scholar]
  118. AinQ. ZeeshanM. KhanS. AliH. Biomimetic hydroxyapatite as potential polymeric nanocarrier for the treatment of Rheumatoid arthritis.J. Biomed. Mater. Res. A2019107122595260010.1002/jbm.a.3676531373751
    [Google Scholar]
  119. MurugesanS. SrinivasanV. LakshmananD.K. VenkateswaranM.R. JayabalS. Muthukumar NadarM.S.A. KathiravanA. Asha JhonsiM. ThilagarS. PeriyasamyS. Evaluation of the anti-rheumatic properties of thymol using carbon dots as nanocarriers on FCA induced arthritic rats.Food Funct.202112115038505010.1039/D1FO00471A33960359
    [Google Scholar]
  120. LiS. SuJ. CaiW. LiuJ. Nanomaterials manipulate macrophages for Rheumatoid arthritis treatment.Front. Pharmacol.20211269924510.3389/fphar.2021.69924534335264
    [Google Scholar]
  121. JamesL.R.A. XuZ.Q. SluyterR. HawksworthE.L. KelsoC. LaiB. PatersonD.J. de JongeM.D. DixonN.E. BeckJ.L. RalphS.F. DillonC.T. An investigation into the interactions of gold nanoparticles and anti-arthritic drugs with macrophages, and their reactivity towards thioredoxin reductase.J. Inorg. Biochem.2015142283810.1016/j.jinorgbio.2014.09.01325306263
    [Google Scholar]
  122. PandeyP.K. MaheshwariR. RavalN. GondaliyaP. KaliaK. TekadeR.K. Nanogold-core multifunctional dendrimer for pulsatile chemo-, photothermal- and photodynamic- therapy of Rheumatoid arthritis.J. Colloid Interface Sci.2019544617710.1016/j.jcis.2019.02.07330825801
    [Google Scholar]
  123. KimJ. KimH.Y. SongS.Y. GoS. SohnH.S. BaikS. SohM. KimK. KimD. KimH.C. LeeN. KimB.S. HyeonT. Synergistic oxygen generation and reactive oxygen species scavenging by manganese ferrite/ceria co-decorated nanoparticles for Rheumatoid arthritis treatment.ACS Nano20191333206321710.1021/acsnano.8b0878530830763
    [Google Scholar]
  124. FerrariM. OnuohaS.C. PitzalisC. Trojan horses and guided missiles: Targeted therapies in the war on arthritis.Nat. Rev. Rheumatol.201511632833710.1038/nrrheum.2015.1725734971
    [Google Scholar]
  125. GorantlaS. SinghviG. RapalliV.K. WaghuleT. DubeyS.K. SahaR.N. Targeted drug-delivery systems in the treatment of Rheumatoid arthritis: Recent advancement and clinical status.Ther. Deliv.202011426928410.4155/tde‑2020‑002932434463
    [Google Scholar]
  126. GouveiaV.M. Lopes-de-AraújoJ. Costa LimaS.A. NunesC. ReisS. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on Rheumatoid arthritis therapy.Nanomedicine (Lond.)20181391037104910.2217/nnm‑2017‑037729790395
    [Google Scholar]
  127. RollettA. ReiterT. NogueiraP. CardinaleM. LoureiroA. GomesA. Cavaco-PauloA. MoreiraA. CarmoA.M. GuebitzG.M. Folic acid-functionalized human serum albumin nanocapsules for targeted drug delivery to chronically activated macrophages.Int. J. Pharm.2012427246046610.1016/j.ijpharm.2012.02.02822374516
    [Google Scholar]
  128. GerlagD.M. RazaK. van BaarsenL.G.M. BrouwerE. BuckleyC.D. BurmesterG.R. GabayC. CatrinaA.I. CopeA.P. CornelisF. DahlqvistS.R. EmeryP. EyreS. FinckhA. GayS. HazesJ.M. van der Helm-van MilA. HuizingaT.W.J. KlareskogL. KvienT.K. LewisC. MacholdK.P. RönnelidJ. SchaardenburgD. SchettG. SmolenJ.S. ThomasS. WorthingtonJ. TakP.P. EULAR recommendations for terminology and research in individuals at risk of Rheumatoid arthritis: Report from the study group for risk factors for Rheumatoid arthritis.Ann. Rheum. Dis.201271563864110.1136/annrheumdis‑2011‑20099022387728
    [Google Scholar]
  129. DeaneK.D. HolersV.M. The natural history of Rheumatoid arthritis.Clin. Ther.20194171256126910.1016/j.clinthera.2019.04.02831196652
    [Google Scholar]
  130. GerlagD.M. SafyM. MaijerK.I. TangM.W. TasS.W. Starmans-KoolM.J.F. van TubergenA. JanssenM. de HairM. HanssonM. de VriesN. ZwindermanA.H. TakP.P. Effects of B-cell directed therapy on the preclinical stage of Rheumatoid arthritis: The PRAIRI study.Ann. Rheum. Dis.201978217918510.1136/annrheumdis‑2017‑21276330504445
    [Google Scholar]
  131. DeaneK.D. StriebichC.C. HolersV.M. Editorial: Prevention of Rheumatoid arthritis: Now is the time, but how to proceed?Arthritis Rheumatol.201769587387710.1002/art.4006128217918
    [Google Scholar]
  132. Alpizar-RodriguezD. FinckhA. Is the prevention of Rheumatoid arthritis possible?Clin. Rheumatol.20203951383138910.1007/s10067‑020‑04927‑632016656
    [Google Scholar]
  133. FurlanA.J. Challenges in acute ischemic stroke clinical trials.Curr. Cardiol. Rep.201214676176610.1007/s11886‑012‑0311‑922922833
    [Google Scholar]
  134. SchiffM.H. von KempisJ. GoldblumR. TesserJ.R. MuellerR.B. Rheumatoid arthritis secondary non-responders to TNF can attain an efficacious and safe response by switching to certolizumab pegol: A phase IV, randomised, multicentre, double-blind, 12-week study, followed by a 12-week open-label phase.Ann. Rheum. Dis.201473122174217710.1136/annrheumdis‑2014‑20532524972708
    [Google Scholar]
  135. SyversenS.W. GollG.L. JørgensenK.K. OlsenI.C. SandangerØ. GehinJ.E. WarrenD.J. SextonJ. MørkC. JahnsenJ. KvienT.K. BolstadN. HaavardsholmE.A. Therapeutic drug monitoring of infliximab compared to standard clinical treatment with infliximab: Study protocol for a randomised, controlled, open, parallel-group, phase IV study (the NOR-DRUM study).Trials20202111310.1186/s13063‑019‑3734‑431907007
    [Google Scholar]
  136. KivitzA.J. SchechtmanJ. TexterM. FichtnerA. de LonguevilleM. ChartashE.K. Vaccine responses in patients with Rheumatoid arthritis treated with certolizumab pegol: Results from a single-blind randomized phase IV trial.J. Rheumatol.201441464865710.3899/jrheum.13094524584918
    [Google Scholar]
  137. MuR. LiC. LiX. KeY. ZhaoL. ChenL. WuR. WuZ. ZuoX. XieY. ChenJ. WeiW. LiuY. LiZ. DaiL. SunL. LiuX. LiZ. Effectiveness and safety of iguratimod treatment in patients with active Rheumatoid arthritis in Chinese: A nationwide, prospective real-world study.Lancet Reg. Health West. Pac.20211010012810.1016/j.lanwpc.2021.10012834327344
    [Google Scholar]
  138. EmeryP. BurmesterG.R. NaredoE. ZhouY. HojnikM. ConaghanP.G. Design of a phase IV randomised, double-blind, placebo-controlled trial assessing the Impact of residual inflammation detected via imaging techniques, drug levels and patient characteristics on the outcome of dose tapering of adalimumab in clinical remission Rheumatoid arthritis (RA) patients (PREDICTRA).BMJ Open201882e01900710.1136/bmjopen‑2017‑01900729490959
    [Google Scholar]
  139. Medeiros-RibeiroA.C. AikawaN.E. SaadC.G.S. YukiE.F.N. PedrosaT. FuscoS.R.G. RojoP.T. PereiraR.M.R. ShinjoS.K. AndradeD.C.O. Sampaio-BarrosP.D. RibeiroC.T. DevezaG.B.H. MartinsV.A.O. SilvaC.A. LopesM.H. DuarteA.J.S. AntonangeloL. SabinoE.C. Kallas e.g. PasotoS.G. BonfaE. Immunogenicity and safety of the Coronavac inactivated vaccine in patients with autoimmune rheumatic diseases: A phase 4 trial.Nat. Med.202127101744175110.1038/s41591‑021‑01469‑534331051
    [Google Scholar]
  140. HansenK. Fracture in clinical studies of tofacitinib in Rheumatoid arthritis.Ther Adv Musculoskelet Dis.2022141759720X22114234610.1177/1759720X221142346
    [Google Scholar]
/content/journals/crr/10.2174/0115733971288433240408062359
Loading
/content/journals/crr/10.2174/0115733971288433240408062359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test