Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Rheumatoid arthritis (RA) is an autoimmune disorder where inflammation and destruction of bone are the hallmarks of the disease. This review focuses on the etiology, pathophysiology, and treatment strategies for RA, along with the different approaches used for the synthesis of pyrazoles, the characterization of various properties, and their biological significance for curing RA. The activated immune system of the body causes inflammation of the synovial joint due to the interaction of immune cells, such as T and B lymphocytes, macrophages, plasma cells, dendritic cells and mast cells. The treatment for RA has been revolutionized with the discovery of new chemical compounds and an understanding of their mechanism in the treatment of the disease. Pyrazoles are the starting materials for the synthesis of heterocyclic compounds and possess great relevance in the pharmaceutical field for the development of new drugs. They are versatile bio-scaffolds in medicinal chemistry and organic synthesis. This has been followed by a deep analysis of pyrazoles and their derivatives on the basis of medical significance in the treatment of RA. This follow-up and information may help the chemists, scientists, and researchers to generate new pyrazole compounds with high efficacy for better treatment of patients with RA. We summarize the review with an understanding of the core of pyrazoles and a claim that their derivatives may be helpful in the development of efficient drugs against RA.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971267325231227092819
2024-03-05
2025-05-30
Loading full text...

Full text loading...

References

  1. ChaitidisN. TheocharisP. FestasC. AritziI. Association of rheumatoid arthritis with hearing loss: A systematic review and meta-analysis.Rheumatol. Int.202040111771177910.1007/s00296‑020‑04609‑1 32488430
    [Google Scholar]
  2. WangM. LiH. WangY. Anti-rheumatic properties of gentiopicroside are associated with suppression of ROS-NF-κB-NLRP3 axis in fibroblast-like synoviocytes and NF-κB pathway in adjuvant-induced arthritis.Front. Pharmacol.20201151510.3389/fphar.2020.00515 32477105
    [Google Scholar]
  3. ScottD.L. WolfeF. HuizingaT.W.J. Rheumatoid arthritis.Lancet201037697461094110810.1016/S0140‑6736(10)60826‑4 20870100
    [Google Scholar]
  4. PavlakisP.P. Rheumatologic disorders and the nervous system.Continuum 202026359161010.1212/CON.0000000000000856 32487898
    [Google Scholar]
  5. KatoK. SutherlandK. TanakaY. Fully automatic quantitative software for assessment of minute finger joint space narrowing progression on radiographs: Evaluation in rheumatoid arthritis patients with long-term sustained clinical low disease activity.Jpn. J. Radiol.2020381097998610.1007/s11604‑020‑00996‑4 32488501
    [Google Scholar]
  6. AletahaD. SmolenJ.S. Diagnosis and management of Rheumatoid arthritis.JAMA2018320131360137210.1001/jama.2018.13103 30285183
    [Google Scholar]
  7. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  8. FichnaM. Małecki PP, Młodzikowska M, Gębarski B, Ruchała M, Fichna P. Increased risk of endocrine autoimmunity in first-degree relatives of patients with autoimmune Addison’s disease.Eur. J. Endocrinol.20201831738110.1530/EJE‑20‑0150 32487775
    [Google Scholar]
  9. PoulsenT.B.G. DamgaardD. JørgensenM.M. Identification of novel native autoantigens in Rheumatoid arthritis.Biomedicines20208614110.3390/biomedicines8060141 32486012
    [Google Scholar]
  10. MoosavianS.P. PaknahadZ. HabibagahiZ. MaracyM. The effects of garlic (Allium sativum) supplementation on inflammatory biomarkers, fatigue, and clinical symptoms in patients with active rheumatoid arthritis: A randomized, double-blind, placebo-controlled trial.Phytother. Res.202034112953296210.1002/ptr.6723 32478922
    [Google Scholar]
  11. ZhangL. YaoY. TianJ. Alterations and abnormal expression of A20 in peripheral monocyte subtypes in patients with rheumatoid arthritis.Clin. Rheumatol.202140341348 32488768
    [Google Scholar]
  12. EsalatmaneshK. FayyaziH. EsalatmaneshR. KhabbaziA. The association between serum levels of growth differentiation factor-15 and activity of Rheumatoid arthritis.Int. J. Clin. Pract.2020749e1356410.1111/ijcp.13564 32478946
    [Google Scholar]
  13. McInnesI.B. SchettG. The pathogenesis of Rheumatoid arthritis.N. Engl. J. Med.2011365232205221910.1056/NEJMra1004965 22150039
    [Google Scholar]
  14. Allard-ChamardH. CarrierN. DufortP. Osteoclasts and their circulating precursors in Rheumatoid arthritis: Relationships with disease activity and bone erosions.Bone Rep.20201210028210.1016/j.bonr.2020.100282 32478145
    [Google Scholar]
  15. KerruN. GummidiL. MaddilaS. GanguK.K. JonnalagaddaS.B. A review on recent advances in nitrogen-containing molecules and their biological applications.Molecules2020258190910.3390/molecules25081909 32326131
    [Google Scholar]
  16. KarrouchiK. RadiS. RamliY. Synthesis and pharmacological activities of pyrazole derivatives: A review.Molecules201823113410.3390/molecules23010134 29329257
    [Google Scholar]
  17. SecrieruA. O’NeillP.M. CristianoM.L.S. Revisiting the structure and chemistry of 3(5)-substituted pyrazoles.Molecules20192514210.3390/molecules25010042 31877672
    [Google Scholar]
  18. ShaabanM.R. MayhoubA.S. FaragA.M. Recent advances in the therapeutic applications of pyrazolines.Expert Opin. Ther. Pat.201222325329110.1517/13543776.2012.667403
    [Google Scholar]
  19. ShaabaniA. NazeriM.T. AfshariR. 5-Amino-pyrazoles: potent reagents in organic and medicinal synthesis.Mol. Divers.201923375180710.1007/s11030‑018‑9902‑8 30552550
    [Google Scholar]
  20. MalvarD.C. FerreiraR.T. de CastroR.A. Antinociceptive, anti-inflammatory and antipyretic effects of 1.5-diphenyl-1H-Pyrazole-3-carbohydrazide, a new heterocyclic pyrazole derivative.Life Sci.2014952818810.1016/j.lfs.2013.12.005 24355293
    [Google Scholar]
  21. KayJ. CalabreseL. The role of interleukin-1 in the pathogenesis of rheumatoid arthritis.Br. J. Rheumatol.200443S3iii2iii910.1093/rheumatology/keh201 15150426
    [Google Scholar]
  22. AnsariA. AliA. AsifM. ShamsuzzamanS. Review: Biologically active pyrazole derivatives.New J. Chem.2017411164110.1039/C6NJ03181A
    [Google Scholar]
  23. HashizumeM. MiharaM. The roles of interleukin-6 in the pathogenesis of Rheumatoid arthritis.Arthritis 201120111810.1155/2011/765624 22046525
    [Google Scholar]
  24. AlamO. NaimM.J. NawazF. AlamM.J. AlamP. Current status of pyrazole and its biological activities.J. Pharm. Bioallied Sci.20168121710.4103/0975‑7406.171694 26957862
    [Google Scholar]
  25. PickensS.R. ChamberlainN.D. VolinM.V. Characterization of interleukin-7 and interleukin-7 receptor in the pathogenesis of rheumatoid arthritis.Arthritis Rheum.201163102884289310.1002/art.30493 21647866
    [Google Scholar]
  26. McInnesI.B. Al-MughalesJ. FieldM. The role of interleukin–15 in T–cell migration and activation in Rheumatoid arthritis.Nat. Med.19962217518210.1038/nm0296‑175 8574962
    [Google Scholar]
  27. UshioH. IshibuchiS. AdachiK. OshitaK. ChibaK. Phenylpyazoleanilides as a potent inhibitor of IL-15 dependent t cell proliferation. Part 1: A new class of orally available immunomodulators.Lett. Drug Des. Discov.20085211111510.2174/157018008783928427
    [Google Scholar]
  28. GaffenS.L. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis.Curr. Rheumatol. Rep.200911536537010.1007/s11926‑009‑0052‑y 19772832
    [Google Scholar]
  29. SekiN. ShimanoK. KondouT. OP0105 pyrazole-anilide derivatives, a new class of immunomodulator which inhibits IL-17 production, ameliorate CIA and psoriasis-like dermatitis in mice.Ann. Rheum. Dis.201473S210010110.1136/annrheumdis‑2014‑eular.3054
    [Google Scholar]
  30. LiewFY WeiXQ McInnesIB Role of interleukin 18 in rheumatoid arthritis.. Ann Rheum Dis2003629000248ii5010.1136/ard.62.suppl_2.ii4814532149
    [Google Scholar]
  31. MagyariL. VarszegiD. KovesdiE. Interleukins and interleukin receptors in rheumatoid arthritis: Research, diagnostics and clinical implications.World J. Orthop.20145451653610.5312/wjo.v5.i4.516 25232528
    [Google Scholar]
  32. ZakyD.S.E. El-NahreryE.M.A. Role of interleukin-23 as a biomarker in rheumatoid arthritis patients and its correlation with disease activity.Int. Immunopharmacol.20163110510810.1016/j.intimp.2015.12.011 26709220
    [Google Scholar]
  33. AlunnoA. CarubbiF. GiacomelliR. GerliR. Cytokines in the pathogenesis of rheumatoid arthritis: New players and therapeutic targets.BMC Rheumatol.201711310.1186/s41927‑017‑0001‑8 30886947
    [Google Scholar]
  34. DuanL. ChenJ. GongF. ShiG. The role of IL-33 in rheumatic diseases.Clin. Dev. Immunol.201320131510.1155/2013/924363 24151520
    [Google Scholar]
  35. FarrugiaM. BaronB. The role of TNF-α in rheumatoid arthritis: A focus on regulatory T cells.J. Clin. Transl. Res.201623849010.18053/jctres.02.201603.005 30873466
    [Google Scholar]
  36. TanakaS. Regulation of bone destruction in rheumatoid arthritis through RANKL-RANK pathways.World J. Orthop.2013411610.5312/wjo.v4.i1.1 23362468
    [Google Scholar]
  37. JooJ.H. HuhJ.E. LeeJ.H. A novel pyrazole derivative protects from ovariectomy-induced osteoporosis through the inhibition of NADPH oxidase.Sci. Rep.2016612238910.1038/srep22389 26975635
    [Google Scholar]
  38. SeylerT.M. ParkY.W. TakemuraS. BLyS and APRIL in rheumatoid arthritis.J. Clin. Invest.2005115113083309210.1172/JCI25265 16239971
    [Google Scholar]
  39. AvciA.B. FeistE. BurmesterG.R. Targeting GM-CSF in rheumatoid arthritis.Clin. Exp. Rheumatol.20163443944 27586802
    [Google Scholar]
  40. LawM. MoralesJ.L. MottramL.F. IyerA. PetersonB.R. AugustA. Structural requirements for the inhibition of calcium mobilization and mast cell activation by the pyrazole derivative BTP2.Int. J. Biochem. Cell Biol.20114381228123910.1016/j.biocel.2011.04.016 21558014
    [Google Scholar]
  41. NoortA.R. TakP.P. TasS.W. Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde?Arthritis Res. Ther.20151711510.1186/s13075‑015‑0527‑3 25774937
    [Google Scholar]
  42. FuY. MaJ. ShiX. A novel pyrazole-containing indolizine derivative suppresses NF-κB activation and protects against TNBS-induced colitis via a PPAR- γ-dependent pathway.Biochem. Pharmacol.201713512613810.1016/j.bcp.2017.03.013 28336257
    [Google Scholar]
  43. TamuraN. Recent findings on phosphoinositide-3 kinase in rheumatic diseases.Nihon Rinsho Meneki Gakkai Kaishi201235181310.2177/jsci.35.8 22374437
    [Google Scholar]
  44. AtmacaH. ÖzkanA.N. ZoraM. Novel ferrocenyl pyrazoles inhibit breast cancer cell viability via induction of apoptosis and inhibition of PI3K/Akt and ERK1/2 signaling.Chem. Biol. Interact.2017263283510.1016/j.cbi.2016.12.010 27989600
    [Google Scholar]
  45. MalemudC.J. The role of the JAK/STAT signal pathway in rheumatoid arthritis.Ther. Adv. Musculoskelet. Dis.2018105-611712710.1177/1759720X18776224 29942363
    [Google Scholar]
  46. LiangX. ZangJ. ZhuM. Design, synthesis, and antitumor evaluation of 4-amino-(1 H)-pyrazole derivatives as JAKs inhibitors.ACS Med. Chem. Lett.201671095095510.1021/acsmedchemlett.6b00247 27774135
    [Google Scholar]
  47. NyhoffL.E. CroffordL.J. KendallP.L. How will Bruton’s tyrosine kinase inhibitors affect rheumatoid arthritis?Arthritis Rheumatol.201769247547710.1002/art.39957 27748073
    [Google Scholar]
  48. SchnuteM.E. BenoitS.E. BuchlerI.P. Aminopyrazole carboxamide bruton’s tyrosine kinase inhibitors.ACS Med. Chem. Lett.2019101808510.1021/acsmedchemlett.8b00461 30655951
    [Google Scholar]
  49. DengG.M. KyttarisV.C. TsokosG.C. Targeting syk in autoimmune rheumatic diseases.Front. Immunol.201677810.3389/fimmu.2016.00078 27014261
    [Google Scholar]
  50. ShenJ. LiX. ZhangZ. 3-aminopyrazolopyrazine derivatives as spleen tyrosine kinase inhibitors.Chem. Biol. Drug Des.201688569069810.1111/cbdd.12798 27264434
    [Google Scholar]
  51. ShankarS. HandaR. Biological agents in rheumatoid arthritis.J. Postgrad. Med.2004504293299 15623977
    [Google Scholar]
  52. AlwarithJ. KahleovaH. RembertE. Nutrition interventions in rheumatoid arthritis: The potential use of plant-based diets. A review.Front. Nutr.2019614110.3389/fnut.2019.00141 31552259
    [Google Scholar]
  53. MertS. KasimogullariR. OkS. A short review on pyrazole derivatives and their applications.J Postdr Res2014246472
    [Google Scholar]
  54. BarrettT.D. PalominoH.L. BrondstetterT.I. Pharmacological characterization of 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimi-dazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), a potent and selective hypoxia-inducible factor prolyl hydroxylase inhibitor.Mol. Pharmacol.201179691092010.1124/mol.110.070508 21372172
    [Google Scholar]
  55. ShihS.R. ChuT.Y. ReddyG.R. Pyrazole compound BPR1P0034 with potent and selective anti-influenza virus activity.J. Biomed. Sci.20101711310.1186/1423‑0127‑17‑13 20178582
    [Google Scholar]
  56. FaidallahH.M. KhanK.A. AsiriA.M. Synthesis and biological evaluation of new 3-trifluoromethylpyrazolesulfonyl-urea and thiourea derivatives as antidiabetic and antimicrobial agents.J. Fluor. Chem.2011132213113710.1016/j.jfluchem.2010.12.009
    [Google Scholar]
  57. AssaliM. AbualhasanM. SawaftahH. HawashM. MousaA. Synthesis, biological activity, and molecular modeling studies of pyrazole and triazole derivatives as selective COX-2 inhibitors.J. Chem.202020206393428
    [Google Scholar]
  58. ZhouS. ZouH. ChenG. HuangG. Synthesis and biological activities of chemical drugs for the treatment of rheumatoid arthritis.Top. Curr. Chem. 201937752810.1007/s41061‑019‑0252‑5 31563994
    [Google Scholar]
  59. AggarwalR. SinghG. KaushikP. KaushikD. PaliwalD. KumarA. Molecular docking design and one-pot expeditious synthesis of novel 2,5-diarylpyrazolo[1,5-a]pyrimidin-7-amines as anti-inflammatory agents.Eur. J. Med. Chem.201510132633310.1016/j.ejmech.2015.06.011 26160113
    [Google Scholar]
  60. KambleR.D. MeshramR.J. HeseS.V. Synthesis and in silico investigation of thiazoles bearing pyrazoles derivatives as anti-inflammatory agents.Comput. Biol. Chem.201661869610.1016/j.compbiolchem.2016.01.007 26844536
    [Google Scholar]
  61. BekhitA.A. Abdel-AziemT. Design, synthesis and biological evaluation of some pyrazole derivatives as anti-inflammatory-antimicrobial agents.Bioorg. Med. Chem.20041281935194510.1016/j.bmc.2004.01.037 15051061
    [Google Scholar]
  62. BekhitA.A. AshourH.M.A. Abdel GhanyY.S. BekhitA.E.D.A. BarakaA. Synthesis and biological evaluation of some thiazolyl and thiadiazolyl derivatives of 1H-pyrazole as anti-inflammatory antimicrobial agents.Eur. J. Med. Chem.200843345646310.1016/j.ejmech.2007.03.030 17532544
    [Google Scholar]
  63. BandgarB.P. TotreJ.V. GawandeS.S. KhobragadeC.N. WarangkarS.C. KadamP.D. Synthesis of novel 3,5-diaryl pyrazole derivatives using combinatorial chemistry as inhibitors of tyrosinase as well as potent anticancer, anti-inflammatory agents.Bioorg. Med. Chem.201018166149615510.1016/j.bmc.2010.06.046 20638287
    [Google Scholar]
  64. GirishaK.S. KallurayaB. NarayanaV. PadmashreeV. Synthesis and pharmacological study of 1-acetyl/propyl-3-aryl-5-(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)-2-pyrazoline.Eur. J. Med. Chem.201045104640464410.1016/j.ejmech.2010.07.032 20702008
    [Google Scholar]
  65. SharmaP.K. KumarS. KumarP. Synthesis and biological evaluation of some pyrazolylpyrazolines as anti-inflammatory–antimicrobial agents.Eur. J. Med. Chem.20104562650265510.1016/j.ejmech.2010.01.059 20171763
    [Google Scholar]
  66. BrulloC. SpisaniS. SelvaticiR. BrunoO. N-Aryl-2-phenyl-2,3-dihydro-imidazo[1,2-b]pyrazole-1-carboxamides 7-substituted strongly inhibiting both fMLP-OMe- and IL-8-induced human neutrophil chemotaxis.Eur. J. Med. Chem.201247157357910.1016/j.ejmech.2011.11.031 22152986
    [Google Scholar]
  67. El-MoghazyS.M. BarsoumF.F. Abdel-RahmanH.M. MarzoukA.A. Synthesis and anti-inflammatory activity of some pyrazole derivatives.Med. Chem. Res.20122181722173310.1007/s00044‑011‑9691‑4
    [Google Scholar]
  68. El-SayedM.A.A. Abdel-AzizN.I. Abdel-AzizA.A.M. El-AzabA.S. ElTahirK.E.H. Synthesis, biological evaluation and molecular modeling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Part 2.Bioorg. Med. Chem.201220103306331610.1016/j.bmc.2012.03.044 22516672
    [Google Scholar]
  69. QiuK.M. YanR. XingM. Synthesis, biological evaluation and molecular modeling of dihydro-pyrazolyl-thiazolinone derivatives as potential COX-2 inhibitors.Bioorg. Med. Chem.201220226648665410.1016/j.bmc.2012.09.021 23062711
    [Google Scholar]
  70. AlegaonS.G. AlagawadiK.R. GargM.K. DushyantK. VinodD. 1,3,4-Trisubstituted pyrazole analogues as promising anti-inflammatory agents.Bioorg. Chem.201454515910.1016/j.bioorg.2014.04.001 24793214
    [Google Scholar]
  71. HassanG.S. Abou-SeriS.M. KamelG. AliM.M. Celecoxib analogs bearing benzofuran moiety as cyclooxygenase-2 inhibitors: Design, synthesis and evaluation as potential anti-inflammatory agents.Eur. J. Med. Chem.20147648249310.1016/j.ejmech.2014.02.033 24607877
    [Google Scholar]
  72. KarrouchiK. ChemlalL. DoudachL. Synthesis, anti-inflammatory and antioxidant activities of some new pyrazole derivatives.J. Pharm. Res.2014811711177
    [Google Scholar]
  73. SelvamT.P. KumarP.V. SaravananG. PrakashC.R. Microwave-assisted synthesis, characterization and biological activity of novel pyrazole derivatives.J. Saudi Chem. Soc.20141861015102110.1016/j.jscs.2011.12.006
    [Google Scholar]
  74. TewariA.K. SinghV.P. YadavP. Synthesis, biological evaluation and molecular modeling study of pyrazole derivatives as selective COX-2 inhibitors and anti-inflammatory agents.Bioorg. Chem.20145681510.1016/j.bioorg.2014.05.004 24893208
    [Google Scholar]
  75. El-FekyS.A.H. Abd El-SamiiZ.K. OsmanN.A. LashineJ. KamelM.A. ThabetH.K. Synthesis, molecular docking and anti-inflammatory screening of novel quinoline incorporated pyrazole derivatives using the Pfitzinger reaction II.Bioorg. Chem.20155810411610.1016/j.bioorg.2014.12.003 25590381
    [Google Scholar]
  76. HussainS. KaushikD. Noval 1-substituted-3,5-dimethyl-4-[(substituted phenyl) diazenyl] pyrazole derivatives: Synthesis and pharmacological activity.J. Saudi Chem. Soc.201519327428110.1016/j.jscs.2012.04.002
    [Google Scholar]
  77. Surendra KumarR. ArifI.A. AhamedA. IdhayadhullaA. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues.Saudi J. Biol. Sci.201623561462010.1016/j.sjbs.2015.07.005 27579011
    [Google Scholar]
  78. AyreyG. YeomansM.A. Synthesis and analysis of [4-14C] phenylbutazone.J. Radioanal. Chem.197420246347110.1007/BF02514293
    [Google Scholar]
  79. ShangY. DuJ. CuiH. Synthesis of celecoxib, its pro-drugs and radiolabeled derivatives. A Brief Review.Org. Prep. Proced. Int.201446213215110.1080/00304948.2014.884371
    [Google Scholar]
  80. Küçükgüzel Ş. Coşkun İ. Aydın S. Synthesis and characterization of celecoxib derivatives as possible anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV agents. Molecules2013183359561410.3390/molecules1803359523519201
    [Google Scholar]
  81. JhaS.K. ChaturvediS.K. VermaR. RainaJ. SharmaL. ChaudharyN. Elettaria cardamomum is examined as a medicinal plant using in-silico screening analysis in order to discover novel possible cardiovascular disease (CVD) inhibitors from its phytoconstituents sabinene, α-terpineol, and α-pinene.IJRTI202383218225
    [Google Scholar]
  82. ChoudharyN. SiddiquiI. RaiJ. SinghS. SurabhiS. GautamH. Simultaneous estimation of lansoprazole and naproxen by using UV spectrophotometer in tablet dosage form.Der Pharma Chem2013526774
    [Google Scholar]
  83. AkbasE. BerberI. SenerA. HasanovB. Synthesis and antibacterial activity of 4-benzoyl-1-methyl-5-phenyl-1H-pyrazole-3-carboxylic acid and derivatives.Farmaco2005601232610.1016/j.farmac.2004.09.003 15652364
    [Google Scholar]
  84. RahimizadehM. PordelM. BakavoliM. RezaeianS. SadeghianA. Synthesis and antibacterial activity of some new derivatives of pyrazole.World J. Microbiol. Biotechnol.201026231732110.1007/s11274‑009‑0178‑0
    [Google Scholar]
  85. KamalA. ShaikA.B. JainN. Design and synthesis of pyrazole–oxindole conjugates targeting tubulin polymerization as new anticancer agents.Eur. J. Med. Chem.20159250151310.1016/j.ejmech.2013.10.077 25599948
    [Google Scholar]
  86. XuY. LiuX.H. SaundersM. Discovery of 3-(trifluoro-methyl)-1H-pyrazole-5-carboxamide activators of the M2 isoform of pyruvate kinase (PKM2).Bioorg. Med. Chem. Lett.201424251551910.1016/j.bmcl.2013.12.028 24374270
    [Google Scholar]
  87. BalbiA. AnzaldiM. MacciòC. Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity.Eur. J. Med. Chem.201146115293530910.1016/j.ejmech.2011.08.014 21920636
    [Google Scholar]
  88. NitulescuG.M. DraghiciC. MissirA.V. Synthesis of new pyrazole derivatives and their anticancer evaluation.Eur. J. Med. Chem.201045114914491910.1016/j.ejmech.2010.07.064 20728965
    [Google Scholar]
  89. ManettiF. MagnaniM. CastagnoloD. Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of mycobacterium tuberculosis.ChemMedChem20061997398910.1002/cmdc.200600026 16892466
    [Google Scholar]
  90. Almeida da SilvaP.E. RamosD.F. BonacorsoH.G. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles.Int. J. Antimicrob. Agents200832213914410.1016/j.ijantimicag.2008.03.019 18571384
    [Google Scholar]
  91. CastagnoloD. De LoguA. RadiM. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis.Bioorg. Med. Chem.200816188587859110.1016/j.bmc.2008.08.016 18752962
    [Google Scholar]
  92. VelaparthiS. BrunsteinerM. UddinR. WanB. FranzblauS.G. PetukhovP.A. 5-tert-butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide derivatives as novel potent inhibitors of Mycobacterium tuberculosis pantothenate synthetase: Initiating a quest for new antitubercular drugs.J. Med. Chem.20085171999200210.1021/jm701372r 18335974
    [Google Scholar]
  93. ManfrediniS. BazzaniniR. BaraldiP.G. Pyrazole-related nucleosides. Synthesis and antiviral/antitumor activity of some substituted pyrazole and pyrazolo[4,3-d]-1,2,3-triazin-4-one nucleosides.J. Med. Chem.199235591792410.1021/jm00083a017 1548681
    [Google Scholar]
  94. ChenX. SchnellerS.W. IkedaS. Synthesis and antiviral activity of 5';-deoxypyrazofurin.J. Med. Chem.199336233727373010.1021/jm00075a030 8246242
    [Google Scholar]
  95. StorerR. AshtonC.J. BaxterA.D. The synthesis and antiviral activity of 4-fluoro-1-β-D-ribofuranosyl-1H-pyrazole-3-carboxamide.Nucleosides Nucleotides199918220321610.1080/15257779908043068 10067273
    [Google Scholar]
  96. GeninM.J. BilesC. KeiserB.J. Novel 1,5-diphenylpyrazole nonnucleoside HIV-1 reverse transcriptase inhibitors with enhanced activity versus the delavirdine-resistant P236L mutant: lead identification and SAR of 3- and 4-substituted derivatives.J. Med. Chem.20004351034104010.1021/jm990383f 10715167
    [Google Scholar]
  97. RostomS.A.F. ShalabyM.A. El-DemellawyM.A. Polysubstituted pyrazoles, part 5.11For part 4: see Ref. [18 Synthesis of new 1-(4-chlorophenyl)-4-hydroxy-1H-pyrazole-3-carboxylic acid hydrazide analogs and some derived ring systems. A novel class of potential antitumor and anti-HCV agents.Eur. J. Med. Chem.20033811-1295997410.1016/j.ejmech.2003.08.003 14642328
    [Google Scholar]
  98. ChimentiF. FioravantiR. BolascoA. Monoamine oxidase isoform-dependent tautomeric influence in the recognition of 3,5-diaryl pyrazole inhibitors.J. Med. Chem.200750342542810.1021/jm060868l 17266193
    [Google Scholar]
  99. KudukS.D. MarcoC.N.D. CofreV. N-Heterocyclic derived M1 positive allosteric modulators.Bioorg. Med. Chem. Lett.20102041334133710.1016/j.bmcl.2010.01.013 20097564
    [Google Scholar]
  100. MalamasM.S. ErdeiJ. GunawanI. New pyrazolyl and thienyl aminohydantoins as potent BACE1 inhibitors: Exploring the S2'; region.Bioorg. Med. Chem. Lett.201121185164517010.1016/j.bmcl.2011.07.057 21835615
    [Google Scholar]
  101. ProbstG. AubeleD.L. BowersS. Discovery of (R)-4-Cyclopropyl-7,8-difluoro-5-(4-(trifluoromethyl)phenylsulfonyl)-4,5-dihydro-1 H -pyrazolo[4,3- c]quinoline (ELND006) and (R)-4-Cyclopropyl-8-fluoro-5-(6-(trifluoromethyl)pyridin-3-ylsulfonyl)-4,5-dihydro-2 H -pyrazolo[4,3- c]quinoline (ELND007): Metabolically stable γ-secretase inhibitors that selectively inhibit the production of amyloid-β over Notch.J. Med. Chem.201356135261527410.1021/jm301741t 23713656
    [Google Scholar]
  102. ZouY. XuL. ChenW. Discovery of pyrazole as C-terminus of selective BACE1 inhibitors.Eur. J. Med. Chem.20136827028310.1016/j.ejmech.2013.06.027 23988410
    [Google Scholar]
  103. HanY.T. KimK. ChoiG.I. Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE).Eur. J. Med. Chem.20147912814210.1016/j.ejmech.2014.03.072 24727489
    [Google Scholar]
  104. CottineauB. TotoP. MarotC. PipaudA. ChenaultJ. Synthesis and hypoglycemic evaluation of substituted pyrazole-4-carboxylic acids.Bioorg. Med. Chem. Lett.200212162105210810.1016/S0960‑894X(02)00380‑3 12127514
    [Google Scholar]
  105. SharonA. PratapR. TiwariP. SrivastavaA. MaulikP.R. RamV.J. Synthesis and in vivo antihyperglycemic activity of 5-(1H-pyrazol-3-yl)methyl-1H-tetrazoles.Bioorg. Med. Chem. Lett.20051582115211710.1016/j.bmcl.2005.02.060 15808480
    [Google Scholar]
  106. HumphriesP.S. LafontaineJ.A. AgreeC.S. Synthesis and SAR of 4-substituted-2-aminopyrimidines as novel c-Jun N-terminal kinase (JNK) inhibitors.Bioorg. Med. Chem. Lett.20091982099210210.1016/j.bmcl.2009.03.023 19327989
    [Google Scholar]
  107. RikimaruK. WakabayashiT. AbeH. A new class of non-thiazolidinedione, non-carboxylic-acid-based highly selective peroxisome proliferator-activated receptor (PPAR) γ agonists: Design and synthesis of benzylpyrazole acylsulfonamides.Bioorg. Med. Chem.201220271473310.1016/j.bmc.2011.12.008 22209730
    [Google Scholar]
  108. XiongY. GuoJ. CandeloreM.R. Discovery of a novel glucagon receptor antagonist N -[(4-(1 S)-1-[3-(3, 5-Dichlorophenyl)-5-(6-methoxynaphthalen-2-yl)-1 H -pyrazol-1-yl]ethylphenyl)carbon-yl]-β-alanine (MK-0893) for the treatment of type II diabetes.J. Med. Chem.201255136137614810.1021/jm300579z 22708876
    [Google Scholar]
/content/journals/crr/10.2174/0115733971267325231227092819
Loading
/content/journals/crr/10.2174/0115733971267325231227092819
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): arthritis; Azoles; combinatorial synthesis; stereochemistry; synovial joint; tautomerism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test