Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

Background

A Liposomal delivery system is a novel and distinguishing way of organized medicine administration. The advancements in liposomal technology allow for controlled drug distribution to treat rheumatoid arthritis effectively. Liposomes are microscopic lipid-based vesicles that have shown promise in transporting substances, such as superoxide dismutase, hemoglobin, erythrocyte interleukin-2, gamma interferon, and smaller compounds.

Objective

Liposomes are biocompatible, nontoxic, biodegradable, non-immunogenic, and flexible, with sizes ranging from 0.025 to 2.5 micrometers. LDS is normally employed to distribute drugs through topical conduits, but fresh investigation has shown that it offers promise for oral, ocular, and parenteral administration. Our major objective is to gather information about liposomes, focusing on their applicability in rheumatoid arthritis treatment.

Methods

In the current review, we have tried to cover the preparation techniques, clinical trials, patents, marketed formulations, vesicle types, formulations used to treat rheumatoid arthritis and other ailments, and layered liposomal formulations with improved characteristics.

Conclusion

Research has established LDS as a biocompatible, sustainable, non-toxic, adaptable material. Researchers working on LDS technology in rheumatoid arthritis will find this review particularly useful as it may unclutter novel ways for therapeutic intercessions in treating the disease.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971284274240215064826
2024-03-04
2025-05-21
Loading full text...

Full text loading...

References

  1. BullockJ. RizviS.A.A. SalehA.M. AhmedS.S. DoD.P. AnsariR.A. AhmedJ. Rheumatoid arthritis: A brief overview of the treatment.Med. Princ. Pract.201827650150710.1159/00049339030173215
    [Google Scholar]
  2. LeeJ.E. KimI.J. ChoM.S. LeeJ. A case of rheumatoid vasculitis involving hepatic artery in early rheumatoid arthritis.J. Korean Med. Sci.20173271207121010.3346/jkms.2017.32.7.120728581281
    [Google Scholar]
  3. FoxC.Q. AhmedS.S. Physician assistant’s clinical review cards.PhiladelphiaF. A. Davis Company2002138139
    [Google Scholar]
  4. McInnesI.B. SchettG. The pathogenesis of Rheumatoid arthritis.N. Engl. J. Med.2011365232205221910.1056/NEJMra100496522150039
    [Google Scholar]
  5. ChaudhariK. RizviS. SyedB.A. Rheumatoid arthritis: Current and future trends.Nat. Rev. Drug Discov.201615530530610.1038/nrd.2016.2127080040
    [Google Scholar]
  6. PicernoV. FerroF. AdinolfiA. ValentiniE. TaniC. AlunnoA. One year in review: The pathogenesis of Rheumatoid arthritis.Clin. Exp. Rheumatol.201533455155826203933
    [Google Scholar]
  7. HuangJ. FuX. ChenX. LiZ. HuangY. LiangC. Promising therapeutic targets for treatment of Rheumatoid arthritis.Front. Immunol.20211268615510.3389/fimmu.2021.68615534305919
    [Google Scholar]
  8. CroffordL.J. Use of NSAIDs in treating patients with arthritis.Arthritis Res. Ther.201315S3S210.1186/ar417424267197
    [Google Scholar]
  9. BullockJ RizviSA SalehAM AhmedSS DoDP AnsariRA AhmedJ Rheumatoid arthritis: A brief overview of the treatment.Med. Prin. Prac.20192765017
    [Google Scholar]
  10. GargM. de JesusA.A. ChapelleD. DanceyP. HerzogR. Rivas-ChaconR. MuskardinT.L.W. ReedA. ReynoldsJ.C. Goldbach-ManskyR. SanchezG.A.M. Rilonacept maintains long-term inflammatory remission in patients with deficiency of the IL-1 receptor antagonist.JCI Insight2017216e9483810.1172/jci.insight.9483828814674
    [Google Scholar]
  11. SemeranoL. ThiolatA. MinichielloE. ClavelG. BessisN. BoissierM.C. Targeting IL-6 for the treatment of Rheumatoid arthritis: Phase II investigational drugs.Expert Opin. Investig. Drugs201423797999910.1517/13543784.2014.91227624766460
    [Google Scholar]
  12. GaleazziM SebastianiG VollR ViapianaO DudlerJ ZuffereyP SelviE FinzelS BootzFS NeriD FRI0118 Dekavil (F8IL10) – update on the results of clinical trials investigating the immunocytokine in patients with Rheumatoid arthritis.Annual European Congress of Rheumatology, EULAR 2018Amsterdam201877603604
    [Google Scholar]
  13. BaslundB. TvedeN. Danneskiold-SamsoeB. LarssonP. PanayiG. PetersenJ. PetersenL.J. BeurskensF.J.M. SchuurmanJ. van de WinkelJ.G.J. ParrenP.W.H.I. GracieJ.A. JongbloedS. LiewF.Y. McInnesI.B. Targeting interleukin-15 in patients with Rheumatoid arthritis: A proof-of-concept study.Arthritis Rheum.20055292686269210.1002/art.2124916142748
    [Google Scholar]
  14. TakP.P. BacchiM. BertolinoM. Pharmacokinetics of IL-18 binding protein in healthy volunteers and subjects with Rheumatoid arthritis or plaque psoriasis.Eur. J. Drug Metab. Pharmacokinet.200631210911610.1007/BF0319112716898079
    [Google Scholar]
  15. MartinD.A. ChurchillM. Flores-SuarezL. CardielM.H. WallaceD. MartinR. PhillipsK. KaineJ.L. DongH. SalingerD. StevensE. RussellC.B. ChungJ.B. A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant Rheumatoid arthritis.Arthritis Res. Ther.2013155R16410.1186/ar434724286136
    [Google Scholar]
  16. KatoM. New insights into IFN-γ in Rheumatoid arthritis: Role in the era of JAK inhibitors.Immunol. Med.2020432727810.1080/25785826.2020.175190832338187
    [Google Scholar]
  17. YellinM. PaliienkoI. BalanescuA. Ter-VartanianS. TseluykoV. XuL.A. TaoX. CardarelliP.M. LeBlancH. NicholG. AncutaC. ChirieacR. LuoA. A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human anti-CXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis.Arthritis Rheum.20126461730173910.1002/art.3433022147649
    [Google Scholar]
  18. WebberJ. StoneT.C. KatiliusE. SmithB.C. GordonB. MasonM.D. TabiZ. BrewisI.A. ClaytonA. Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan™) platform.Mol. Cell. Proteomics20141341050106410.1074/mcp.M113.03213624505114
    [Google Scholar]
  19. ShahraraS. ProudfootA.E.I. ParkC.C. VolinM.V. HainesG.K. WoodsJ.M. AikensC.H. HandelT.M. PopeR.M. Inhibition of monocyte chemoattractant protein-1 ameliorates rat adjuvant-induced arthritis.J. Immunol.200818053447345610.4049/jimmunol.180.5.344718292571
    [Google Scholar]
  20. HaringmanJ.J. GerlagD.M. SmeetsT.J.M. BaetenD. van den BoschF. BresnihanB. BreedveldF.C. DinantH.J. LegayF. GramH. LoetscherP. SchmouderR. WoodworthT. TakP.P. A randomized controlled trial with an anti-CCL2 (anti–monocyte chemotactic protein 1) monoclonal antibody in patients with Rheumatoid arthritis.Arthritis Rheum.20065482387239210.1002/art.2197516869001
    [Google Scholar]
  21. RuthJ.H. ParkC.C. AminM.A. LeschC. MarotteH. ShahraraS. KochA.E. Interleukin-18 as an in vivo mediator of monocyte recruitment in rodent models of Rheumatoid arthritis.Arthritis Res. Ther.2010123R11810.1186/ar305520565717
    [Google Scholar]
  22. KivitzA. MaciagP. GulatiP. DuS. ConnollyS.E. DaviesP. LiX. RepsherT. HaggertyH.G. LondeiM. THU0109 Lack of efficacy of CCR1 antagonist BMS-817399 in patients with moderate to severe rheumatoid arthritis: Results of 12-week proof-of-concept study.Ann. Rheum. Dis.2014732215.121510.1136/annrheumdis‑2014‑eular.3871
    [Google Scholar]
  23. TanakaY. TakeuchiT. YamanakaH. NankiT. UmeharaH. YasudaN. TagoF. KitaharaY. KawakuboM. ToriiK. HojoS. KawanoT. ImaiT. A phase 2 study of E6011, an anti-Fractalkine monoclonal antibody, in patients with rheumatoid arthritis inadequately responding to biological disease-modifying antirheumatic drugs.Mod. Rheumatol.202131478378910.1080/14397595.2020.186867533427546
    [Google Scholar]
  24. MonnetE. LapeyreG. PoelgeestE. JacqminP. GraafK. ReijersJ. MoerlandM. BurggraafJ. MinC. Evidence of NI-0101 pharmacological activity, an anti-TLR4 antibody, in a randomized phase I dose escalation study in healthy volunteers receiving LPS.Clin. Pharmacol. Ther.2017101220020810.1002/cpt.52227706798
    [Google Scholar]
  25. LiuX. NiS. LiC. XuN. ChenW. WuM. van WijnenA.J. WangY. Circulating microRNA-23b as a new biomarker for rheumatoid arthritis.Gene201971214391110.1016/j.gene.2019.06.00131176730
    [Google Scholar]
  26. LebreM.C. VergunstC.E. ChoiI.Y.K. AarrassS. OliveiraA.S.F. WyantT. HorukR. ReedquistK.A. TakP.P. Why CCR2 and CCR5 blockade failed and why CCR1 blockade might still be effective in the treatment of rheumatoid arthritis.PLoS One201167e2177210.1371/journal.pone.002177221747955
    [Google Scholar]
  27. TakP.P. BalanescuA. TseluykoV. BojinS. DrescherE. DairaghiD. MiaoS. MarchesinV. JaenJ. SchallT.J. BekkerP. Chemokine receptor CCR1 antagonist CCX354-C treatment for Rheumatoid arthritis: CARAT-2, a randomised, placebo controlled clinical trial.Ann. Rheum. Dis.201372333734410.1136/annrheumdis‑2011‑20160522589376
    [Google Scholar]
  28. LenertA. FardoD.W. Detecting novel micro RNAs in Rheumatoid arthritis with gene-based association testing.Clin. Exp. Rheumatol.201735458659228134081
    [Google Scholar]
  29. VergunstC.E. GerlagD.M. LopatinskayaL. KlareskogL. SmithM.D. van den BoschF. DinantH.J. LeeY. WyantT. JacobsonE.W. BaetenD. TakP.P. Modulation of CCR2 in Rheumatoid arthritis: A double-blind, randomized, placebo-controlled clinical trial.Arthritis Rheum.20085871931193910.1002/art.2359118576354
    [Google Scholar]
  30. GossageD.L. CieslarováB. ApS. ZhengH. XinY. LalP. ChenG. SmithV. SundyJ.S. Phase 1b study of the safety, pharmacokinetics, and disease-related outcomes of the matrix metalloproteinase-9 inhibitor andecaliximab in patients with rheumatoid arthritis.Clin. Ther.2018401156165.e510.1016/j.clinthera.2017.11.01129287749
    [Google Scholar]
  31. KuhnC. WeinerH.L. Therapeutic anti-CD3 monoclonal antibodies: From bench to bedside.Immunotherapy20168888990610.2217/imt‑2016‑004927161438
    [Google Scholar]
  32. EmeryP. BurmesterG.R. BykerkV.P. CombeB.G. FurstD.E. BarréE. KaryekarC.S. WongD.A. HuizingaT.W.J. Evaluating drug-free remission with abatacept in early Rheumatoid arthritis: Results from the phase 3b, multicentre, randomised, active-controlled AVERT study of 24 months, with a 12-month, double-blind treatment period.Ann. Rheum. Dis.2015741192610.1136/annrheumdis‑2014‑20610625367713
    [Google Scholar]
  33. KhouryM. Louis-PlenceP. EscriouV. NoelD. LargeauC. CantosC. SchermanD. JorgensenC. ApparaillyF. Efficient new cationic liposome formulation for systemic delivery of small interfering RNA silencing tumor necrosis factor α in experimental arthritis.Arthritis Rheum.20065461867187710.1002/art.2187616729293
    [Google Scholar]
  34. KhouryM. EscriouV. CourtiesG. GalyA. YaoR. LargeauC. SchermanD. JorgensenC. ApparaillyF. Efficient suppression of murine arthritis by combined anticytokine small interfering RNA lipoplexes.Arthritis Rheum.20085882356236710.1002/art.2366018668557
    [Google Scholar]
  35. SujithaS. DineshP. RasoolM. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation.Eur. J. Pharm. Biopharm.202014917019110.1016/j.ejpb.2020.02.00732068029
    [Google Scholar]
  36. DuanW. LiH. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis.J. Nanobiotechnol20181615810.1186/s12951‑018‑0382‑x30060740
    [Google Scholar]
  37. PaolettiA. LyB. CailleauC. GaoF. Péan de Ponfilly-SotierM. PascaudJ. RivièreE. YangL. NwosuL. ElmesmariA. ReynaudF. Liposomal AntagomiR-155-5p restores anti-inflammatory macrophages and improves arthritis in pre-clinical models of Rheumatoid arthritis.Arthritis Rheumatol.2023761183137527031
    [Google Scholar]
  38. KapoorB. SinghS.K. GulatiM. GuptaR. VaidyaY. Application of liposomes in treatment of Rheumatoid arthritis: Quo vadis.ScientificWorldJournal2014201411710.1155/2014/97835124688450
    [Google Scholar]
  39. GulatiM. GroverM. SinghS. SinghM. Lipophilic drug derivatives in liposomes.Int. J. Pharm.1998165212916810.1016/S0378‑5173(98)00006‑4
    [Google Scholar]
  40. FelnerovaD. ViretJ.F. GlückR. MoserC. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs.Curr. Opin. Biotechnol.200415651852910.1016/j.copbio.2004.10.00515560978
    [Google Scholar]
  41. MufamadiM.S. PillayV. ChoonaraY.E. Du ToitL.C. ModiG. NaidooD. NdesendoV.M.K. A review on composite liposomal technologies for specialized drug delivery.J. Drug Deliv.2011201111910.1155/2011/93985121490759
    [Google Scholar]
  42. GangwarM. SinghR. GoelR.K. NathG. Recent advances in various emerging vescicular systems: An overview.Asian Pac. J. Trop. Biomed.201222S1176S118810.1016/S2221‑1691(12)60381‑5
    [Google Scholar]
  43. SrinathP. VyasS.P. DiwanP.V. Preparation and pharmacodynamic evaluation of liposomes of indomethacin.Drug Dev. Ind. Pharm.200026331332110.1081/DDC‑10010035910738648
    [Google Scholar]
  44. YuanF. QuanL. CuiL. GoldringS.R. WangD. Development of macromolecular prodrug for Rheumatoid arthritis.Adv. Drug Deliv. Rev.201264121205121910.1016/j.addr.2012.03.00622433784
    [Google Scholar]
  45. TürkerS. ErdoğanS. ÖzerY.A. BilgiliH. DeveciS. Enhanced efficacy of diclofenac sodium-loaded lipogelosome formulation in intra-articular treatment of Rheumatoid arthritis.J. Drug Target.2008161515710.1080/1061186070172519118172820
    [Google Scholar]
  46. PhillipsN.C. ThomasD.P. KnightC.G. DingleJ.T. Liposome-incorporated corticosteroids. II. Therapeutic activity in experimental arthritis.Ann. Rheum. Dis.197938655355710.1136/ard.38.6.553539847
    [Google Scholar]
  47. DavidenkovaE.F. TernovaN.K. RozenbergO.A. NoskinL.A. LoshakovaL.V. SulimenkoY.A. LikhosherstN.N. Relationship between prolongation of antiinflammatory activity of hydrocortisone incorporated into liposomes and their lipid composition in experimental arthritis.Bull. Exp. Biol. Med.198497671671810.1007/BF00804151
    [Google Scholar]
  48. MetselaarJ.M. van den BergW.B. HolthuysenA.E.M. WaubenM.H.M. StormG. van LentP.L.E.M. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis.Ann. Rheum. Dis.200463434835310.1136/ard.2003.00994415020326
    [Google Scholar]
  49. AvnirY. UlmanskyR. WassermanV. Even-ChenS. BroyerM. BarenholzY. NaparstekY. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: A novel approach to treating autoimmune arthritis.Arthritis Rheum.200858111912910.1002/art.2323018163482
    [Google Scholar]
  50. HofkensW. GreversL.C. WalgreenB. de VriesT.J. LeenenP.J.M. EvertsV. StormG. van den BergW.B. van LentP.L. Intravenously delivered glucocorticoid liposomes inhibit osteoclast activity and bone erosion in murine antigen-induced arthritis.J. Control. Release2011152336336910.1016/j.jconrel.2011.03.00121396411
    [Google Scholar]
  51. HofkensW. StormG. van den BergW.B. van LentP.L. Liposomal targeting of glucocorticoids to the inflamed synovium inhibits cartilage matrix destruction during murine antigen-induced arthritis.Int. J. Pharm.2011416248649210.1016/j.ijpharm.2011.02.06021382458
    [Google Scholar]
  52. UlmanskyR. TurjemanK. BaruM. KatzavianG. HarelM. SigalA. NaparstekY. BarenholzY. Glucocorticoids in nano-liposomes administered intravenously and subcutaneously to adjuvant arthritis rats are superior to the free drugs in suppressing arthritis and inflammatory cytokines.J. Control. Release2012160229930510.1016/j.jconrel.2011.12.02422226777
    [Google Scholar]
  53. BonanomiM.H. VelvartM. StimpelM. RoosK.M. FehrK. WederH.G. Studies of pharmacokinetics and therapeutic effects of glucocorticoids entrapped in liposomes after intraarticular application in healthy rabbits and in rabbits with antigen-induced arthritis.Rheumatol. Int.19877520321210.1007/BF005413783423619
    [Google Scholar]
  54. BonanomiM.H. VelvartM. WederH.G. Fate of different kinds of liposomes containing dexamethasone palmitate after intra-articular injection into rabbit joints.J. Microencapsul.19874318920010.3109/026520487090218123504504
    [Google Scholar]
  55. KoningG.A. SchiffelersR.M. WaubenM.H.M. KokR.J. MastrobattistaE. MolemaG. ten HagenT.L.M. StormG. Targeting of angiogenic endothelial cells at sites of inflammation by dexamethasone phosphate–containing RGD peptide liposomes inhibits experimental arthritis.Arthritis Rheum.20065441198120810.1002/art.2171916575845
    [Google Scholar]
  56. RauchhausU. KinneR.W. PohlersD. WiegandS. WölfertA. GajdaM. BräuerR. PanznerS. Targeted delivery of liposomal dexamethasone phosphate to the spleen provides a persistent therapeutic effect in rat antigen-induced arthritis.Ann. Rheum. Dis.200968121933193410.1136/ard.2009.10898519910302
    [Google Scholar]
  57. RauchhausU. SchwaigerF. PanznerS. Separating therapeutic efficacy from glucocorticoid side-effects in rodent arthritis using novel, liposomal delivery of dexamethasone phosphate: Long-term suppression of arthritis facilitates interval treatment.Arthritis Res. Ther.2009116R19010.1186/ar288920003498
    [Google Scholar]
  58. AndersonR. FranchA. CastellM. Perez-CanoF.J. BräuerR. PohlersD. GajdaM. SiskosA.P. KatsilaT. TamvakopoulosC. RauchhausU. PanznerS. KinneR.W. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis.Arthritis Res. Ther.2010124R14710.1186/ar308920642832
    [Google Scholar]
  59. van den HovenJ.M. HofkensW. WaubenM.H.M. Wagenaar-HilbersJ.P.A. BeijnenJ.H. NuijenB. MetselaarJ.M. StormG. Optimizing the therapeutic index of liposomal glucocorticoids in experimental arthritis.Int. J. Pharm.2011416247147710.1016/j.ijpharm.2011.03.02521440612
    [Google Scholar]
  60. LóPez-GarcíaF. Vázquez-AutónI.M. OilF. LatooreR. MorenoF. VillalaínJ. Gómez-FernándezJ.C. Intra-articular therapy of experimental arthritis with a derivative of triamcinolone acetonide incorporated in liposomes.J. Pharm. Pharmacol.201145657657810.1111/j.2042‑7158.1993.tb05603.x8103110
    [Google Scholar]
  61. KonigsbergP.J. DebrickJ.E. PawlowskiT.J. StaerzU.D. Liposome encapsulated aurothiomalate reduces collagen-induced arthritis in DBA/1J mice.Biochim. Biophys. Acta Biomembr.19991421114916210.1016/S0005‑2736(99)00120‑010561480
    [Google Scholar]
  62. FoongW.C. GreenK.L. Retention and distribution of liposome-entrapped [3H]methotrexate injected into normal or arthritic rabbit joints.J. Pharm. Pharmacol.201140746446810.1111/j.2042‑7158.1988.tb05278.x2904984
    [Google Scholar]
  63. FoongW.C. GreenK.L. Treatment of antigen-induced arthritis in rabbits with liposome-entrapped methotrexate injected intra-articularly.J. Pharm. Pharmacol.201145320420910.1111/j.2042‑7158.1993.tb05533.x8097778
    [Google Scholar]
  64. WilliamsA.S. CamilleriJ.P. AmosN. WilliamsB.D. Differential effects of methotrexate and liposomally conjugated methotrexate in rat adjuvant-induced arthritis.Clin. Exp. Immunol.2008102356056510.1111/j.1365‑2249.1995.tb03853.x8536373
    [Google Scholar]
  65. WilliamsA.S. CamilleriJ.P. GoodfellowR.M. WilliamsB.D. A single intra-articular injection of liposomally conjugated methotrexate suppresses joint inflammation in rat antigen-induced arthritis.Rheumatology (Oxford)199635871972410.1093/rheumatology/35.8.7198761182
    [Google Scholar]
  66. WilliamsA.S. JonesS.G. GoodfellowR.M. AmosN. WilliamsB.D. Interleukin-1β (IL-1β) inhibition: A possible mechanism for the anti-inflammatory potency of liposomally conjugated methotrexate formulations in arthritis.Br. J. Pharmacol.1999128123424010.1038/sj.bjp.070277610498857
    [Google Scholar]
  67. WilliamsA. GoodfellowR. TopleyN. AmosN. WilliamsB. The suppression of rat collagen-induced arthritis and inhibition of macrophage derived mediator release by liposomal methotrexate formulations.Inflamm. Res.200049415516110.1007/s00011005057510858015
    [Google Scholar]
  68. WilliamsA.S. TopleyN. DojcinovS. RichardsP.J. WilliamsB.D. Amelioration of rat antigen-induced arthritis by liposomally conjugated methotrexate is accompanied by down-regulation of cytokine mRNA expression.Br. J. Rheumatol.200140437538310.1093/rheumatology/40.4.37511312373
    [Google Scholar]
  69. PrabhuP. ShettyR. KolandM. BhatV.K. VijayalakshmiK.K. NairyH.M. ShettyN.G. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity.Int. J. Nanomedicine2012717718610.2147/IJN.S2531022275833
    [Google Scholar]
  70. MariaB LuizaB.D MarieC.A AlexandruB.G.T. CristianB. Comparative evaluation of methotrexate toxicity as solution for injection and liposomes following a short term treatment in a murine model of arthritis. Note I. Haematological and biochemical evaluation.FARMACIA2013611220228
    [Google Scholar]
  71. van LentP.L.E.M. van den BersselaarL. van den HoekA.E.M. van de EndeM. DijkstraC.D. van RooijenN. van de PutteL.B.A. van den BergW.B. Reversible depletion of synovial lining cells after intra-articular treatment with liposome-encapsulated dichloromethylene diphosphonate.Rheumatol. Int.1993131213010.1007/BF002903308516620
    [Google Scholar]
  72. Van LentP.L.E.M. HolthuysenA.E.M. Van RooijenN. De PutteL.BAV. Den BergW.B.V. Local removal of phagocytic synovial lining cells by clodronate-liposomes decreases cartilage destruction during collagen type II arthritis.Ann. Rheum. Dis.199857740841310.1136/ard.57.7.4089797567
    [Google Scholar]
  73. KinneR.W. Schmidt-WeberC.B. HoppeR. BuchnerE. Palombo-KinneE. NürnbergE. EmmrichF. Long-term amelioration of rat adjuvant arthritis following systemic elimination of macrophages by clodronate-containing liposomes.Arthritis Rheum.199538121777179010.1002/art.17803812118849350
    [Google Scholar]
  74. KinneRW SchmidtCB BuchnerE HoppeR NürnbergE EmmrichF Treatment of rat arthritides with clodronate-containing liposomes.Scandinavian J Rheum.199524sup10191710.3109/03009749509100907
    [Google Scholar]
  75. RichardsP.J. WilliamsA.S. GoodfellowR.M. WilliamsB.D. Liposomal clodronate eliminates synovial macrophages, reduces inflammation and ameliorates joint destruction in antigen-induced arthritis.Rheumatology (Oxford)199938981882510.1093/rheumatology/38.9.81810515641
    [Google Scholar]
  76. BarreraP. BlomA. Van LentP.L.E.M. Van BlooisL. BeijnenJ.H. Van RooijenN. De Waal MalefijtM.C. Van De PutteL.B.A. StormG. Van Den BergW.B. Synovial macrophage depletion with clodronate-containing liposomes in rheumatoid arthritis.Arthritis Rheum.20004391951195910.1002/1529‑0131(200009)43:9<1951::AID‑ANR5>3.0.CO;2‑K11014344
    [Google Scholar]
  77. CĕponisA. WarisE. MönkkönenJ. LaasonenL. HyttinenM. SolovievaS.A. HanemaaijerR. BitschA. KonttinenY.T. Effects of low-dose, noncytotoxic, intraarticular liposomal clodronate on development of erosions and proteoglycan loss in established antigen-induced arthritis in rabbits.Arthritis Rheum.20014481908191610.1002/1529‑0131(200108)44:8<1908::AID‑ART329>3.0.CO;2‑411508444
    [Google Scholar]
  78. RichardsP.J. WilliamsB.D. WilliamsA.S. Suppression of chronic streptococcal cell wall-induced arthritis in Lewis rats by liposomal clodronate.Rheumatology (Oxford)200140997898710.1093/rheumatology/40.9.97811561107
    [Google Scholar]
  79. HightonJ. GuévremontD. ThomsonJ. CarlisleB. TuckerI. A trial of clodronate-liposomes as anti-macrophage treatment in a sheep model of arthritis.Clin. Exp. Rheumatol.1999171434810084031
    [Google Scholar]
  80. CorvoM.L. BoermanO.C. OyenW.J.G. Van BlooisL. CruzM.E.M. CrommelinD.J.A. StormG. Intravenous administration of superoxide dismutase entrapped in long circulating liposomes.Biochim. Biophys. Acta Biomembr.19991419232533410.1016/S0005‑2736(99)00081‑410407083
    [Google Scholar]
  81. Luisa CorvoM. JorgeJ.C.S. van’t HofR. CruzM.E.M. CrommelinD.J.A. StormG. Superoxide dismutase entrapped in long-circulating liposomes: Formulation design and therapeutic activity in rat adjuvant arthritis.Biochim. Biophys. Acta Biomembr.20021564122723610.1016/S0005‑2736(02)00457‑1
    [Google Scholar]
  82. SimõesS.I. DelgadoT.C. LopesR.M. JesusS. FerreiraA.A. MoraisJ.A. CruzM.E.M. CorvoM.L. MartinsM.B.F. Developments in the rat adjuvant arthritis model and its use in therapeutic evaluation of novel non-invasive treatment by SOD in Transfersomes.J. Control. Release2005103241943410.1016/j.jconrel.2004.12.00815763624
    [Google Scholar]
  83. CorvoM.L. BoermanO.C. OyenW.J.G. JorgeJ.C.S. CruzM.E.M. CrommelinD.J.A. StormG. Subcutaneous administration of superoxide dismutase entrapped in long circulating liposomes: in vivo fate and therapeutic activity in an inflammation model.Pharm. Res.200017560060610.1023/A:100757710196410888313
    [Google Scholar]
  84. GasparM.M. BoermanO.C. LavermanP. CorvoM.L. StormG. CruzM.E.M. Enzymosomes with surface-exposed superoxide dismutase: in vivo behaviour and therapeutic activity in a model of adjuvant arthritis.J. Control. Release2007117218619510.1016/j.jconrel.2006.10.01817169460
    [Google Scholar]
  85. RichardP. RouxH. MatteiJ.P. MichelsonA.M. JadotG. Open clinical study of liposomal superoxide dismutase in severe rheumatoid arthritis. Study of a series of 7 cases.Therapie19894442912952688185
    [Google Scholar]
  86. TrifM. GuillenC. VaughanD.M. TelferJ.M. BrewerJ.M. RoseanuA. BrockJ.H. Liposomes as possible carriers for lactoferrin in the local treatment of inflammatory diseases.Exp. Biol. Med. (Maywood)2001226655956410.1177/15353702012260060811395926
    [Google Scholar]
  87. TrifM. RoseanuA. BrockJ.H. BrewerJ.M. Designing lipid nanostructures for local delivery of biologically active macromolecules.J. Liposome Res.2007173-423724810.1080/0898210070153002718027244
    [Google Scholar]
  88. Watson-ClarkR.A. BanquerigoM.L. ShellyK. HawthorneM.F. BrahnE. Model studies directed toward the application of boron neutron capture therapy to Rheumatoid arthritis: Boron delivery by liposomes in rat collagen-induced arthritis.Proc. Natl. Acad. Sci. USA19989552531253410.1073/pnas.95.5.25319482920
    [Google Scholar]
  89. ShenQ. ShuH. XuX. ShuG. DuY. YingX. Tofacitinib citrate-based liposomes for effective treatment of Rheumatoid arthritis.Pharmazie202075413113532295688
    [Google Scholar]
  90. AndraV.V.S.N.L. PammiS.V.N. BhatrajuL.V.K.P. RuddarajuL.K. A comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents.Bionanoscience202212127429110.1007/s12668‑022‑00941‑x35096502
    [Google Scholar]
  91. SharmaN VermaS Current and future prospective of liposomes as drug delivery vehicles for the effective treatment of cancer.Int J Green Pharm2017113837
    [Google Scholar]
  92. BulbakeU. DoppalapudiS. KommineniN. KhanW. Liposomal formulations in clinical use: An updated review.Pharmaceutics2017941210.3390/pharmaceutics902001228346375
    [Google Scholar]
  93. BanghamA.D. StandishM.M. WatkinsJ.C. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol.1965131238IN2710.1016/S0022‑2836(65)80093‑65859039
    [Google Scholar]
  94. BanghamA.D. StandishM.M. WeissmannG. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations.J. Mol. Biol.1965131253IN2810.1016/S0022‑2836(65)80094‑85859040
    [Google Scholar]
  95. ZhangH. Thin-film hydration followed by extrusion method for liposome preparation. Liposomes.Methods Protoc.201715221722
    [Google Scholar]
  96. MozafariM.R. PardakhtyA. AzarmiS. JazayeriJ.A. NokhodchiA. OmriA. Role of nanocarrier systems in cancer nanotherapy.J. Liposome Res.200919431032110.3109/0898210090291320419863166
    [Google Scholar]
  97. LasicD.D. Kinetic and thermodynamic effects in the formation of amphiphilic colloidal particles.J. Liposome Res.19933225727310.3109/08982109309148214
    [Google Scholar]
  98. GrefR. MinamitakeY. PeracchiaM.T. TrubetskoyV. TorchilinV. LangerR. Biodegradable long-circulating polymeric nanospheres.Science199426351531600160310.1126/science.81282458128245
    [Google Scholar]
  99. MetselaarJ.M. BruinP. de BoerL.W.T. de VringerT. SnelC. OussorenC. WaubenM.H.M. CrommelinD.J.A. StormG. HenninkW.E. A novel family of L-amino acid-based biodegradable polymer-lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity.Bioconjug. Chem.20031461156116410.1021/bc034036314624629
    [Google Scholar]
  100. KriegA.M. From bugs to drugs: Therapeutic immunomodulation with oligodeoxynucleotides containing CpG sequences from bacterial DNA.Antisense Nucleic Acid Drug Dev.200111318118810.1089/10872900130033871711446594
    [Google Scholar]
  101. MozafariM.R. FlanaganJ. Matia-MerinoL. AwatiA. OmriA. SuntresZ.E. SinghH. Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods.J. Sci. Food Agric.200686132038204510.1002/jsfa.2576
    [Google Scholar]
  102. GartiN. Delivery and controlled release of bioactives in foods and nutraceuticals. AmsterdamElsevier2008
    [Google Scholar]
  103. ZarifL. GraybillJ.R. PerlinD. ManninoR.J. Cochleates: New lipid-based drug delivery system.J. Liposome Res.200010452353810.3109/08982100009031116
    [Google Scholar]
  104. ZarifL. Elongated supramolecular assemblies in drug delivery.J. Control. Release2002811-272310.1016/S0168‑3659(02)00010‑X11992674
    [Google Scholar]
  105. TardiC. DrechslerM. BauerK.H. BrandlM. Steam sterilisation of vesicular phospholipid gels.Int. J. Pharm.20012171-216117210.1016/S0378‑5173(01)00605‑611292552
    [Google Scholar]
  106. RafeM.R. Liposomal drug delivery systems have opened a new window in pharmaceutical sciences: A literature-based review.Asian J. Pharm.201711410.22377/ajp.v11i04.1620
    [Google Scholar]
  107. BatzriS. KornE.D. Single bilayer liposomes prepared without sonication.Biochim. Biophys. Acta Biomembr.197329841015101910.1016/0005‑2736(73)90408‑2
    [Google Scholar]
  108. DeamerD.W. Preparation and properties of ether-injection liposomes.Ann. N. Y. Acad. Sci.1978308125025810.1111/j.1749‑6632.1978.tb22027.x279292
    [Google Scholar]
  109. BnyanR. CesariniL. KhanI. RobertsM. EhtezaziT. The effect of ethanol evaporation on the properties of inkjet produced liposomes.Daru202028127128010.1007/s40199‑020‑00340‑132303981
    [Google Scholar]
  110. SzokaF.Jr PapahadjopoulosD. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation.Proc. Natl. Acad. Sci. USA19787594194419810.1073/pnas.75.9.4194279908
    [Google Scholar]
  111. HandaT. SakanoM. NaitoS. HiramatsuM. TsuboiM. Thermal SiO and H13CO+ line observations of the dense molecular cloud G0. 11–0.11 in the Galactic Center Region.Astrophys. J.2006636126126610.1086/497881
    [Google Scholar]
  112. JahnA. VreelandW.N. DeVoeD.L. LocascioL.E. GaitanM. Microfluidic directed formation of liposomes of controlled size.Langmuir200723116289629310.1021/la070051a17451256
    [Google Scholar]
  113. YuB. LeeR.J. LeeL.J. Microfluidic methods for production of liposomes.Methods Enzymol.200946512914110.1016/S0076‑6879(09)65007‑219913165
    [Google Scholar]
  114. SawantG.S. SutarK.V. KanekarA.S. Liposome: A novel drug delivery system.Int. J. Res. Rev.20218425226810.52403/ijrr.20210433
    [Google Scholar]
  115. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑10223432972
    [Google Scholar]
  116. MarchianòV. MatosM. Serrano-PertierraE. GutiérrezG. Blanco-LópezM.C. Vesicles as antibiotic carrier: State of art.Int. J. Pharm.202058511947810.1016/j.ijpharm.2020.11947832473370
    [Google Scholar]
  117. Jaafar-MaalejC. DiabR. AndrieuV. ElaissariA. FessiH. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation.J. Liposome Res.201020322824310.3109/0898210090334792319899957
    [Google Scholar]
  118. JiaM. DengC. LuoJ. ZhangP. SunX. ZhangZ. GongT. A novel dexamethasone-loaded liposome alleviates Rheumatoid arthritis in rats.Int. J. Pharm.20185401-2576410.1016/j.ijpharm.2018.02.00129408684
    [Google Scholar]
  119. MarieM.K. HabeebA.D. Preparation and evaluation of salbutamol liposomal suspension using chloroform film method.Mustansiriya Med. J20121123944
    [Google Scholar]
  120. LaouiniA. Jaafar-MaalejC. Gandoura-SfarS. CharcossetC. FessiH. Spironolactone-loaded liposomes produced using a membrane contactor method: An improvement of the ethanol injection technique.In: UK Colloids 2011: An International Colloid and Surface Science Symposium. Springer Berlin Heidelberg. 2012; pp. 23-28.10.1007/978‑3‑642‑28974‑3_5
    [Google Scholar]
  121. HirschM. ZiroliV. HelmM. MassingU. Preparation of small amounts of sterile siRNA-liposomes with high entrapping efficiency by dual asymmetric centrifugation (DAC).J. Control. Release20091351808810.1016/j.jconrel.2008.11.02919124051
    [Google Scholar]
  122. XiaF. JinH. ZhaoY. GuoX. Supercritical antisolvent-based technology for preparation of vitamin D3 proliposome and its characteristics.Chin. J. Chem. Eng.20111961039104610.1016/S1004‑9541(11)60089‑X
    [Google Scholar]
  123. MajaL. ŽeljkoK. MatejaP. Sustainable technologies for liposome preparation.J. Supercrit. Fluids202016510498410.1016/j.supflu.2020.104984
    [Google Scholar]
  124. ImuraT. GotohT. OtakeK. YodaS. TakebayashiY. YokoyamaS. TakebayashiH. SakaiH. YuasaM. AbeM. Control of physicochemical properties of liposomes using a supercritical reverse phase evaporation method.Langmuir20031962021202510.1021/la020589a
    [Google Scholar]
  125. ZhaoL. TemelliF. Preparation of anthocyanin-loaded liposomes using an improved supercritical carbon dioxide method.Innov. Food Sci. Emerg. Technol.20173911912810.1016/j.ifset.2016.11.013
    [Google Scholar]
  126. VaronaS. MartínÁ. CoceroM.J. Liposomal incorporation of lavandin essential oil by a thin-film hydration method and by particles from gas-saturated solutions.Ind. Eng. Chem. Res.20115042088209710.1021/ie102016r
    [Google Scholar]
  127. MachadoA.R. PinheiroA.C. VicenteA.A. Souza-SoaresL.A. CerqueiraM.A. Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions.Food Res. Int.201912065666710.1016/j.foodres.2018.11.02331000284
    [Google Scholar]
  128. PauliG. TangW.L. LiS.D. Development and characterization of the solvent-assisted active loading technology (SALT) for liposomal loading of poorly water-soluble compounds.Pharmaceutics201911946510.3390/pharmaceutics1109046531505795
    [Google Scholar]
  129. Aranda-LaraL. Morales-AvilaE. Luna-GutiérrezM.A. Olivé-AlvarezE. Isaac-OlivéK. Radiolabeled liposomes and lipoproteins as lipidic nanoparticles for imaging and therapy.Chem. Phys. Lipids202023010493410.1016/j.chemphyslip.2020.10493432562666
    [Google Scholar]
  130. BagheriH. Ali MansooriG. HashemipourH. A novel approach to predict drugs solubility in supercritical solvents for RESS process using various cubic EoS-mixing rule.J. Mol. Liq.201826117418810.1016/j.molliq.2018.03.081
    [Google Scholar]
  131. YenT.T.H. Nho DanL. DucL.H. TungB.T. HueP.T.M. Preparation and characterization of freeze-dried liposomes loaded with amphotericin B.Curr. Drug Ther.2019141657310.2174/1574885514666181217130259
    [Google Scholar]
  132. MishraH. ChauhanV. KumarK. TeotiaD. A comprehensive review on Liposomes: A novel drug delivery system.J. Drug Deliv. Ther.20188640040410.22270/jddt.v8i6.2071
    [Google Scholar]
  133. VishvakramaP. SharmaS. Liposomes: An overview.J. Drug Deliv. Ther.201420144755
    [Google Scholar]
  134. SamadikhahH.R. MajidiA. NikkhahM. HosseinkhaniS. Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes.Int. J. Nanomed201162275228322072865
    [Google Scholar]
  135. PaecharoenchaiO. NiyomthamN. ApirakaramwongA. NgawhirunpatT. RojanarataT. YingyongnarongkulB. OpanasopitP. Structure relationship of cationic lipids on gene transfection mediated by cationic liposomes.AAPS PharmSciTech20121341302130810.1208/s12249‑012‑9857‑523007192
    [Google Scholar]
  136. LiX. ChenD. LeC. ZhuC. GanY. HovgaardL. YangM. Novel mucus-penetrating liposomes as a potential oral drug delivery system: Preparation, in vitro characterization, and enhanced cellular uptake.Int. J. Nanomed201163151316222163166
    [Google Scholar]
  137. ChiomaE.D. ChiomaE.D. ChiomaE.D. Formulation and evaluation of etodolacniosomes by modified ether injection technique.Universal J Pharmaceut Res2016111610.22270/ujpr.v1i1.R1
    [Google Scholar]
  138. CaoY. DongX. ChenX. Polymer-modified liposomes for drug delivery: From fundamentals to applications.Pharmaceutics202214477810.3390/pharmaceutics1404077835456613
    [Google Scholar]
  139. ChenM.X. LiB.K. YinD.K. LiangJ. LiS.S. PengD.Y. Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery.Carbohydr. Polym.201411129830410.1016/j.carbpol.2014.04.03825037355
    [Google Scholar]
  140. HaidarZ.S. HamdyR.C. TabrizianM. Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes.Biomaterials20082991207121510.1016/j.biomaterials.2007.11.01218076987
    [Google Scholar]
  141. HaidarZ.S. HamdyR.C. TabrizianM. Biocompatibility and safety of a hybrid core–shell nanoparticulate OP-1 delivery system intramuscularly administered in rats.Biomaterials201031102746275410.1016/j.biomaterials.2009.12.03420044132
    [Google Scholar]
  142. FukuiY. FujimotoK. The preparation of sugar polymer-coated nanocapsules by the layer-by-layer deposition on the liposome.Langmuir20092517100201002510.1021/la900883419705896
    [Google Scholar]
  143. XianJ. ZhongX. GuH. WangX. LiJ. LiJ. WuY. ZhangC. ZhangJ. Colonic delivery of celastrol-loaded layer-by-layer liposomes with pectin/trimethylated chitosan coating to enhance its anti-ulcerative colitis effects.Pharmaceutics20211312200510.3390/pharmaceutics1312200534959287
    [Google Scholar]
  144. HermalF. FrischB. SpechtA. Bourel-BonnetL. HeurtaultB. Development and characterization of layer-by-layer coated liposomes with poly(L-lysine) and poly(L-glutamic acid) to increase their resistance in biological media.Int. J. Pharm.202058611956810.1016/j.ijpharm.2020.11956832592900
    [Google Scholar]
  145. FujimotoK. ToyodaT. FukuiY. Preparation of bionanocapsules by the layer-by-layer deposition of polypeptides onto a liposome.Macromolecules200740145122512810.1021/ma070477w
    [Google Scholar]
  146. DreadenE.C. KongY.W. MortonS.W. CorreaS. ChoiK.Y. ShopsowitzK.E. RenggliK. DrapkinR. YaffeM.B. HammondP.T. Tumor-targeted synergistic blockade of MAPK and PI3K from a layer-by-layer nanoparticle.Clin. Cancer Res.201521194410441910.1158/1078‑0432.CCR‑15‑001326034127
    [Google Scholar]
  147. AlaviM. KarimiN. SafaeiM. Application of various types of liposomes in drug delivery systems.Adv. Pharm. Bull.2017713910.15171/apb.2017.00228507932
    [Google Scholar]
  148. RigacciL. MappaS. NassiL. AlteriniR. CarraiV. BernardiF. BosiA. Liposome-encapsulated doxorubicin in combination with cyclophosphamide, vincristine, prednisone and rituximab in patients with lymphoma and concurrent cardiac diseases or pre-treated with anthracyclines.Hematol. Oncol.200725419820310.1002/hon.82717654614
    [Google Scholar]
  149. LasicD. Novel applications of liposomes.Trends Biotechnol.199816730732110.1016/S0167‑7799(98)01220‑79675915
    [Google Scholar]
  150. JohnsonE.M. OjwangJ.O. SzekelyA. WallaceT.L. WarnockD.W. Comparison of in vitro antifungal activities of free and liposome-encapsulated nystatin with those of four amphotericin B formulations.Antimicrob. Agents Chemother.19984261412141610.1128/AAC.42.6.14129624486
    [Google Scholar]
  151. LiuD ZhangN Cancer chemotherapy with lipid-based nanocarriers.Crit Rev Ther Drug Carrier Syst.2010275371417
    [Google Scholar]
  152. KshirsagarN.A. PandyaS.K. KirodianG.B. SanathS. Liposomal drug delivery system from laboratory to clinic.J. Postgrad. Med.2005515Suppl. 1S5S1516519249
    [Google Scholar]
  153. ZhangL GuFX ChanJM WangAZ LangerRS FarokhzadOC Nanoparticles in medicine: Therapeutic applications and developments.Clin Pharmacol Ther.20088357619
    [Google Scholar]
  154. Drulis-KawaZ. Dorotkiewicz-JachA. Liposomes as delivery systems for antibiotics.Int. J. Pharm.20103871-218719810.1016/j.ijpharm.2009.11.03319969054
    [Google Scholar]
  155. TsengL.P. ChiouC.J. DengM.C. LinM.H. PanR.N. HuangY.Y. LiuD.Z. Evaluation of encapsulated Newcastle disease virus liposomes using various phospholipids administered to improve chicken humoral immunity.J. Biomed. Mater. Res. B Appl. Biomater.200991B262162510.1002/jbm.b.3143719582853
    [Google Scholar]
  156. TangM.B.Y. GoonA.T.J. GohC.L. Study on the efficacy of ELA- Max (4% liposomal lidocaine) compared with EMLA cream (eutectic mixture of local anesthetics) using thermosensory threshold analysis in adult volunteers.J. Dermatolog. Treat.2004152848710.1080/0954663031001849115204157
    [Google Scholar]
  157. SinghS. VardhanH. KotlaN.G. MaddiboyinaB. SharmaD. WebsterT.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic.Int. J. Nanomedicine2016111475148227114707
    [Google Scholar]
  158. LeN.T.T. CaoV.D. NguyenT.N.Q. LeT.T.H. TranT.T. Hoang ThiT.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications.Int. J. Mol. Sci.20192019470610.3390/ijms2019470631547569
    [Google Scholar]
  159. AndreopoulouE. GaiottiD. KimE. DowneyA. MirchandaniD. HamiltonA. JacobsA. CurtinJ. MuggiaF. Pegylated liposomal doxorubicin HCL (PLD; Caelyx/Doxil®): Experience with long-term maintenance in responding patients with recurrent epithelial ovarian cancer.Ann. Oncol.200718471672110.1093/annonc/mdl48417301073
    [Google Scholar]
  160. BarenholzY.C. Doxil® — The first FDA-approved nano-drug: Lessons learned.J. Control. Release2012160211713410.1016/j.jconrel.2012.03.02022484195
    [Google Scholar]
  161. FukudaT. SumiT. TeramaeM. NakanoY. MorishitaM. TeradaH. YoshidaH. MatsumotoY. YasuiT. IshikoO. Pegylated liposomal doxorubicin for platinum-resistant or refractory Müllerian carcinoma (epithelial ovarian carcinoma, primary carcinoma of Fallopian tube and peritoneal carcinoma): A single-institutional experience.Oncol. Lett.201351353810.3892/ol.2012.97123255889
    [Google Scholar]
  162. FassasA. AnagnostopoulosA. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia.Leuk. Lymphoma200546679580210.1080/1042819050005243816019523
    [Google Scholar]
  163. GillP.S. WernzJ. ScaddenD.T. CohenP. MukwayaG.M. von RoennJ.H. JacobsM. KempinS. SilverbergI. GonzalesG. RarickM.U. MyersA.M. ShepherdF. SawkaC. PikeM.C. RossM.E. Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma.J. Clin. Oncol.19961482353236410.1200/JCO.1996.14.8.23538708728
    [Google Scholar]
  164. GardikisK. TsimplouliC. DimasK. Micha-ScrettasM. DemetzosC. New chimeric advanced drug delivery nano systems (chi-aDDnSs) as doxorubicin carriers.Int. J. Pharm.20104021-223123710.1016/j.ijpharm.2010.10.00720934501
    [Google Scholar]
  165. LeonardR.C.F. WilliamsS. TulpuleA. LevineA.M. OliverosS. Improving the therapeutic index of anthracycline chemotherapy: Focus on liposomal doxorubicin (Myocet™).Breast200918421822410.1016/j.breast.2009.05.00419656681
    [Google Scholar]
  166. MeunierF. PrenticeH.G. RingdénO. Liposomal amphotericin B (AmBisome): Safety data from a phase II/III clinical trial.J. Antimicrob. Chemother.199128Suppl. B839110.1093/jac/28.suppl_B.831778895
    [Google Scholar]
  167. PhuphanichS. MariaB. BraeckmanR. ChamberlainM. A pharmacokinetic study of intra-CSF administered encapsulated cytarabine (DepoCyt®) for the treatment of neoplastic meningitis in patients with leukemia, lymphoma, or solid tumors as part of a phase III study.J. Neurooncol.200681220120810.1007/s11060‑006‑9218‑x16941075
    [Google Scholar]
  168. ChenE. BrownD.M. WongT.P. BenzM.S. KegleyE. CoxJ. FishR.H. KimR.Y. Lucentis® using Visudyne® study: Determining the threshold-dose fluence of verteporfin photodynamic therapy combined with intravitreal ranibizumab for exudative macular degeneration.Clin. Ophthalmol.201041073107910.2147/OPTH.S1396920957143
    [Google Scholar]
  169. ParticipantsV.R. Guidelines for using verteporfin (Visudyne) in photodynamic therapy for choroidal neovascularization due to age-related macular degeneration and other causes: Update.Retina200525211913410.1097/00006982‑200502000‑0000215689800
    [Google Scholar]
  170. BresslerN.M. BresslerS.B. Photodynamic therapy with verteporfin (Visudyne): Impact on ophthalmology and visual sciences.Invest. Ophthalmol. Vis. Sci.200041362462810711673
    [Google Scholar]
  171. GamblingD. HughesT. MartinG. HortonW. ManvelianG. A comparison of Depodur, a novel, single-dose extended-release epidural morphine, with standard epidural morphine for pain relief after lower abdominal surgery.Anesth. Analg.200510041065107410.1213/01.ANE.0000145009.03574.7815781524
    [Google Scholar]
  172. CarvalhoB. RolandL.M. ChuL.F. CampitelliV.A.III RileyE.T. Single-dose, extended-release epidural morphine (DepoDur) compared to conventional epidural morphine for post-cesarean pain.Anesth. Analg.2007105117618310.1213/01.ane.0000265533.13477.2617578973
    [Google Scholar]
  173. HartrickC.T. HartrickK.A. Extended-release epidural morphine (DepoDur™): Review and safety analysis.Expert Rev. Neurother.20088111641164810.1586/14737175.8.11.164118986234
    [Google Scholar]
  174. SilvermanJ.A. DeitcherS.R. Marqibo® (vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine.Cancer Chemother. Pharmacol.201371355556410.1007/s00280‑012‑2042‑423212117
    [Google Scholar]
  175. BedikianA.Y. SilvermanJ.A. PapadopoulosN.E. KimK.B. HageyA.E. VardeleonA. HwuW.J. HomsiJ. DaviesM. HwuP. Pharmacokinetics and safety of Marqibo (vincristine sulfate liposomes injection) in cancer patients with impaired liver function.J. Clin. Pharmacol.20115181205121210.1177/009127001038149920978276
    [Google Scholar]
  176. RodriguezM.A. PytlikR. KozakT. ChhanabhaiM. GascoyneR. LuB. DeitcherS.R. WinterJ.N. Vincristine sulfate liposomes injection (Marqibo) in heavily pretreated patients with refractory aggressive non-Hodgkin lymphoma.Cancer2009115153475348210.1002/cncr.2435919536896
    [Google Scholar]
  177. ZhangH. Onivyde for the therapy of multiple solid tumors.Onco Targets Ther.201693001300710.2147/OTT.S10558727284250
    [Google Scholar]
  178. DrummondD.C. NobleC.O. GuoZ. HongK. ParkJ.W. KirpotinD.B. Development of a highly active nanoliposomal irinotecan using a novel intraliposomal stabilization strategy.Cancer Res.20066663271327710.1158/0008‑5472.CAN‑05‑400716540680
    [Google Scholar]
  179. KangM.H. WangJ. MakenaM.R. LeeJ.S. PazN. HallC.P. SongM.M. CalderonR.I. CruzR.E. HindleA. KoW. FitzgeraldJ.B. DrummondD.C. TricheT.J. ReynoldsC.P. Activity of MM-398, nanoliposomal irinotecan (nal-IRI), in Ewing’s family tumor xenografts is associated with high exposure of tumor to drug and high SLFN11 expression.Clin. Cancer Res.20152151139115010.1158/1078‑0432.CCR‑14‑188225733708
    [Google Scholar]
  180. RahmanM. BegS. SharmaG. SainiS. RubR.A. AnejaP. AnwarF. AlamM.A. KumarV. Lipid-based vesicular nanocargoes as nanotherapeutic targets for the effective management of rheumatoid arthritis.Recent Patents Anti-Infect. Drug Disc.201611131510.2174/1574891X110116051119551327193030
    [Google Scholar]
  181. NiemiecS ThompsonJ Liposomal encapsulation of glycosaminoglycans for the treatment of arthritic joints.WO2003000190A22003
  182. MetselaarJ.M. Liposomal corticosteroids for treatment of inflammatory disorders in humansWO2013066179A12013
  183. BarenholzY NaparstekY AvnirY UlmanksyR Use of liposomal glucocorticoids for treating inflammatory states.WO2006027786A22006
  184. BaconA.D LaingP GregoriadisG. Small interfering RNA delivery.US20120121689A12012
  185. KurzrockR LiL MehtaK AggarawalB.B HelsonL. Liposomal curcumin for treatment of diseases.US8784881B22014
  186. WoodleM.C MartinF.J HuangS.K. Method of treatment of inflamed tissues.US5356633A1994
  187. LowP.S PohS. Delivery of agents to inflamed tissues using folate-targeted liposomes.US20130071321A12013
  188. FunkM SchulzeB GuenziE MichaelisU BohnenkampH EichhornM Schmitt-SodyM Cationic liposomal preparations for the treatment of rheumatoid arthritis.WO2007134819A12007
  189. JensenS.S AndersenT.L Cationic liposomal drug delivery system for specific targeting of human cd14+ monocytes in whole blood.EP2638896A12013
  190. PanznerS HeckerM EndertG FankhanelS. Oligonucleotide/carrier combinations targeting CD40.EP1658839A12006
  191. PanznerS KerwitzY RauchhausU LutzS EndertG Improvements in or relating to amphoteric liposomes.WO2007031333A22007
  192. DellianM MichaelisU NaujoksK.W SauerB SchulzeB TeifelM. Cationic diagnostic, imaging and therapeutic agents associated with activated vascular sites.WO2001082899A22002
  193. SmithH.J SmithJ.R. Anti-tumor necrosis factor alpha (TNF- ) antibody used as a targeting agent to treat arthritis and other diseases.US20130115269A12013
  194. WolfgangN AlbrechtV. PEGylated liposomal formulations for photodynamic treatment of inflammatory diseases.US20110160642A12011
  195. SmithH.J SmithJ.R. Anti-interleukin-1 (IL-1) antibody used as a targeting agent to treat arthritis and other diseases.US20130115270A12013
  196. SobhiB. Preparation of heavy metal-containing nano-liposomes and their uses in medical therapy.WO2008053484A22008
/content/journals/crr/10.2174/0115733971284274240215064826
Loading
/content/journals/crr/10.2174/0115733971284274240215064826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test