Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-3971
  • E-ISSN: 1875-6360

Abstract

This comprehensive exploration delves into the multifaceted attributes of quercetin, a flavonoid with extensive health-promoting potential. The review navigates through its fundamental properties, encompassing its chemical structure, classification as a flavonoid, and its natural prevalence in various sources. Addressing solubility, stability, and bioavailability challenges, the investigation delves into innovative isolation techniques, including solvent extraction, solid-phase extraction, natural deep eutectic solvents, supercritical fluid extraction, microwave-assisted extraction, column chromatography, and high-performance thin-layer chromatography. Transitioning into pharmacological implications, the study unveils quercetin's roles in anti-inflammatory pathways, antioxidant effects, and immune modulation, reflecting its versatile significance in health management. The review highlights its impact on wound healing processes and its potential to mitigate arthritis, elucidating its holistic contributions. Culminating in an exploration of recent studies, the analysis underscores quercetin's remarkable anti-inflammatory and anti-arthritis activities, reflecting its substantial potential across various ailments. The review concludes by projecting future trajectories, emphasizing prospects for an advanced understanding of quercetin's mechanisms, sustainable extraction techniques, clinical integration, and exploration of synergistic combinations. Collectively, this review investigation underscores quercetin's dynamic role at the intersection of natural compounds and medicinal applications, offering profound implications for well-being and health enhancement.

Loading

Article metrics loading...

/content/journals/crr/10.2174/0115733971280645240415101912
2024-05-28
2025-05-22
Loading full text...

Full text loading...

References

  1. RudrapalM. ChetiaD. Plant flavonoids as potential source of future antimalarial leads.Sys Rev Pharm.201681131810.5530/srp.2017.1.4
    [Google Scholar]
  2. AtlanteA. AmadoroG. BobbaA. LatinaV. Functional foods: An approach to modulate molecular mechanisms of Alzheimer’s disease.Cells2020911234710.3390/cells911234733114170
    [Google Scholar]
  3. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
  4. WangR.X. ZhouM. MaH.L. QiaoY.B. LiQ.S. The role of chronic inflammation in various diseases and anti-inflammatory therapies containing natural products.ChemMedChem202116101576159210.1002/cmdc.20200099633528076
    [Google Scholar]
  5. JakobssonU. HallbergI.R. Pain and quality of life among older people with rheumatoid arthritis and/or osteoarthritis: A literature review.J. Clin. Nurs.200211443044310.1046/j.1365‑2702.2002.00624.x12100639
    [Google Scholar]
  6. YadavH MahalvarA PradhanM YadavK SahuKK YadavR Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment.Med. Drug Discov.20231710015110.1016/j.medidd.2023.100151
    [Google Scholar]
  7. AkbariB. Baghaei-YazdiN. BahmaieM. AbhariM.F. The role of plant-derived natural antioxidants in reduction of oxidative stress.Biofactors202248361163310.1002/biof.183135229925
    [Google Scholar]
  8. KhanH. SuredaA. BelwalT. ÇetinkayaS. Süntarİ. TejadaS. DevkotaH.P. UllahH. AschnerM. Polyphenols in the treatment of autoimmune diseases.Autoimmun. Rev.201918764765710.1016/j.autrev.2019.05.00131059841
    [Google Scholar]
  9. ReinM.J. RenoufM. HernandezC.C. GorettaA.L. ThakkarS.K. da PintoS.M. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy.Br. J. Clin. Pharmacol.201375358860210.1111/j.1365‑2125.2012.04425.x22897361
    [Google Scholar]
  10. FürstR ZündorfI. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress.Mediators Inflamm.2014201414683210.1155/2014/146832
    [Google Scholar]
  11. SenS. ChakrabortyR. The role of antioxidants in human health.Oxidative stress: diagnostics, prevention, and therapyAm Chem Soc 2011; 1-37.
    [Google Scholar]
  12. PatelR.V. MistryB.M. ShindeS.K. SyedR. SinghV. ShinH.S. Therapeutic potential of quercetin as a cardiovascular agent.Eur. J. Med. Chem.201815588990410.1016/j.ejmech.2018.06.05329966915
    [Google Scholar]
  13. GamiB. PathakS. ParabiaM. Ethnobotanical, phytochemical and pharmacological review of Mimusops elengi Linn.Asian Pac. J. Trop. Biomed.20122974374810.1016/S2221‑1691(12)60221‑423570006
    [Google Scholar]
  14. QiaoZ. LisselF. MALDI matrices for the analysis of low molecular weight compounds: Rational design, challenges and perspectives.Chem. Asian J.202116886887810.1002/asia.20210004433657276
    [Google Scholar]
  15. AmićD. AmićD.D. BesloD. RastijaV. LucićB. TrinajstićN. SAR and QSAR of the antioxidant activity of flavonoids.Curr. Med. Chem.200714782784510.2174/09298670778009095417346166
    [Google Scholar]
  16. MichalaA.S. PritsaA. Quercetin: A molecule of great biochemical and clinical value and its beneficial effect on diabetes and cancer.Diseases20221033710.3390/diseases1003003735892731
    [Google Scholar]
  17. LiY. YaoJ. HanC. YangJ. ChaudhryM. WangS. LiuH. YinY. Quercetin, inflammation and immunity.Nutrients20168316710.3390/nu803016726999194
    [Google Scholar]
  18. BukhariS.B. MemonS. TahirM.M. BhangerM.I. Synthesis, characterization and antioxidant activity copper-quercetin complex.Spectrochim. Acta A Mol. Biomol. Spectrosc.20087151901190618783981
    [Google Scholar]
  19. BentzA.B. A Review of quercetin: Chemistry, antioxident properties, and bioavailability.J. Young Investig.20172017
    [Google Scholar]
  20. CullenA.E. CentnerA.M. DeitadoR. FernandezJ. SalazarG. The impact of dietary supplementation of whole foods and polyphenols on atherosclerosis.Nutrients2020127206910.3390/nu1207206932664664
    [Google Scholar]
  21. AghababaeiF. HadidiM. Recent advances in potential health benefits of quercetin.Pharmaceuticals2023167102010.3390/ph1607102037513932
    [Google Scholar]
  22. MateasT.M. Harnessing the power of microbiome assessment tools as part of neuroprotective nutrition and lifestyle medicine interventions.Microorganisms2018623510.3390/microorganisms602003529693607
    [Google Scholar]
  23. JainR. AgarwalN. Exploring herbal medicinal plants as antidiabetic agents: A comprehensive review of historical context, applications, efficacy, and safety considerations of herbal medicine.J. Med. Plants Res.202328
    [Google Scholar]
  24. GuoY. BrunoR.S. Endogenous and exogenous mediators of quercetin bioavailability.J. Nutr. Biochem.201526320121010.1016/j.jnutbio.2014.10.00825468612
    [Google Scholar]
  25. SaucedaN.D. RoblesR.L.E. RicardoA.M. Biopolymer nanoparticles: A strategy to enhance stability, bioavailability, and biological effects of phenolic compounds as functional ingredients.J. Sci. Food Agric.20221021415210.1002/jsfa.1151234460939
    [Google Scholar]
  26. AliA. AhmadU. AkhtarJ. Badruddeen KhanM.M. Engineered nano scale formulation strategies to augment efficiency of nutraceuticals.J. Funct. Foods20196210355410.1016/j.jff.2019.103554
    [Google Scholar]
  27. FengG. QiW. BaoY. ChaoY. Anti-rheumatic effect of quercetin and recent developments in nano formulation.RSC Adv.20211172807293
    [Google Scholar]
  28. MikušováV. MikušP. Advances in chitosan-based nanoparticles for drug delivery.Int. J. Mol. Sci.20212217965210.3390/ijms2217965234502560
    [Google Scholar]
  29. SinkarS.R. KombeS.V. SamarthV.D. SatputeS.V. DeshattiwarN.J. BuradeN.V. DhuldhajU.P. Chemistry and biological activities of quercetin: A bioactive flavonoid.Chemistry.20222022
    [Google Scholar]
  30. YinS.J. ZhaoJ. YangF.Q. Recent applications of magnetic solid phase extraction in sample preparation for phytochemical analysis.J. Pharm. Biomed. Anal.202119211367510.1016/j.jpba.2020.11367533099113
    [Google Scholar]
  31. MišanA. NađpalJ. StuparA. PojićM. MandićA. VerpoorteR. ChoiY.H. The perspectives of natural deep eutectic solvents in agri-food sector.Crit. Rev. Food Sci. Nutr.202060152564259210.1080/10408398.2019.165071731407921
    [Google Scholar]
  32. MojzerE. HrnčičM. ŠkergetM. KnezŽ. BrenU. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects.Molecules201621790110.3390/molecules2107090127409600
    [Google Scholar]
  33. KalaH.K. MehtaR. SenK.K. TandeyR. MandalV. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough.Trends Analyt. Chem.20168514015210.1016/j.trac.2016.09.007
    [Google Scholar]
  34. ManzoorM.F. HussainA. SameenA. SaharA. KhanS. SiddiqueR. AadilR.M. XuB. Novel extraction, rapid assessment and bioavailability improvement of quercetin: A review.Ultrason. Sonochem.20217810568610.1016/j.ultsonch.2021.10568634358980
    [Google Scholar]
  35. TomouE.M. PapakyriakopoulouP. SkaltsaH. ValsamiG. KadoglouN.P.E. Bio-actives from natural products with potential cardioprotective properties: Isolation, identification, and pharmacological actions of apigenin, quercetin, and silibinin.Molecules2023285238710.3390/molecules2805238736903630
    [Google Scholar]
  36. SrivastavaM. High-performance thin-layer chromatography (HPTLC)Springer Science & Business Media2010
    [Google Scholar]
  37. HodekP. TrefilP. StiborováM. Flavonoids-potent and versatile biologically active compounds interacting with cytochromes P450.Chem. Biol. Interact.2002139112110.1016/S0009‑2797(01)00285‑X11803026
    [Google Scholar]
  38. MbousY.P. HayyanM. HayyanA. WongW.F. HashimM.A. LooiC.Y. Applications of deep eutectic solvents in biotechnology and bioengineering—Promises and challenges.Biotechnol. Adv.201735210513410.1016/j.biotechadv.2016.11.00627923764
    [Google Scholar]
  39. TenórioC.J. FerreiraM.R. SoaresL.A. Recent advances on preparative LC approaches for polyphenol separation and purification: Their sources and main activities.Trends Food Sci. Technol.2022128129146
    [Google Scholar]
  40. LutharZ. GermM. LikarM. GolobA. Vogel-MikušK. PongracP. KušarA. PravstI. KreftI. Breeding buckwheat for increased levels of rutin, quercetin and other bioactive compounds with potential antiviral effects.Plants2020912163810.3390/plants912163833255469
    [Google Scholar]
  41. DmitrienkoS.G. KudrinskayaV.A. ApyariV.V. Methods of extraction, preconcentration, and determination of quercetin.J. Anal. Chem.201267429931110.1134/S106193481204003X
    [Google Scholar]
  42. LojkováL. PluháčkováH. BenešováK. KudláčkováB. CerkalR. The highest yield, or greener solvents? Latest trends in quercetin extraction methods.Trends Analyt. Chem.202316711722910.1016/j.trac.2023.117229
    [Google Scholar]
  43. AresA.M. NozalM.J. BernalJ. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.J. Chromatogr. A20131313789510.1016/j.chroma.2013.07.05123899380
    [Google Scholar]
  44. KaouiS. ChebliB. BasaidK. MirY. Deep eutectic solvents as sustainable extraction media for plants and food samples: A review.Sustain. Chem. Pharm.20233110093710.1016/j.scp.2022.100937
    [Google Scholar]
  45. KhadhraouiB. UmmatV. TiwariB.K. Fabiano-TixierA.S. ChematF. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products.Ultrason. Sonochem.20217610562510.1016/j.ultsonch.2021.10562534147916
    [Google Scholar]
  46. AzizA. NoreenS. KhalidW. MubarikF. NiaziM. KoraqiH. AliA. LimaC.M.G. AlansariW.S. EskandraniA.A. ShamlanG. AL-FargaA. Extraction of bioactive compounds from different vegetable sprouts and their potential role in the formulation of functional foods against various disorders: A literature-based review.Molecules20222721732010.3390/molecules2721732036364145
    [Google Scholar]
  47. PanzellaL. MocciaF. NastiR. MarzoratiS. VerottaL. NapolitanoA. Bioactive phenolic compounds from agri-food wastes: An update on green and sustainable extraction methodologies.Front. Nutr.202076010.3389/fnut.2020.0006032457916
    [Google Scholar]
  48. MansurA.R. LeeS.G. LeeB.H. HanS.G. ChoiS.W. SongW.J. NamT.G. Phenolic compounds in common buckwheat sprouts: Composition, isolation, analysis and bioactivities.Food Sci. Biotechnol.202231893595610.1007/s10068‑022‑01056‑535873372
    [Google Scholar]
  49. MorenoD.A. CarvajalM. BerenguerL.C. VigueraG.C. Chemical and biological characterisation of nutraceutical compounds of broccoli.J. Pharm. Biomed. Anal.20064151508152210.1016/j.jpba.2006.04.00316713696
    [Google Scholar]
  50. GadkariP.V. BalaramanM. Catechins: Sources, extraction and encapsulation: A review.Food Bioprod. Process.20159312213810.1016/j.fbp.2013.12.004
    [Google Scholar]
  51. OzkanG. FrancoP. De MarcoI. XiaoJ. CapanogluE. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications.Food Chem.201927249450610.1016/j.foodchem.2018.07.20530309574
    [Google Scholar]
  52. AlviT. AsifZ. KhanI.M.K. Clean label extraction of bioactive compounds from food waste through microwave-assisted extraction technique-A review.Food Biosci.20224610158010.1016/j.fbio.2022.101580
    [Google Scholar]
  53. RifnaE.J. MisraN.N. DwivediM. Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review.Crit. Rev. Food Sci. Nutr.202363671975210.1080/10408398.2021.195292334309440
    [Google Scholar]
  54. AltemimiA. LakhssassiN. BaharloueiA. WatsonD. LightfootD. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts.Plants2017644210.3390/plants604004228937585
    [Google Scholar]
  55. SilvaS.A. RodríguezR.P. MachadoS.D.I. CervantesL.J. BarrecaD. PittalaV. SamecD. Orhani.e. GulcanH.O. HernandezF.T.Y. BattinoM. NabaviS.F. DeviK.P. NabaviS.M. Evaluation of the status quo of polyphenols analysis: Part II—analysis methods and food processing effects.Compr. Rev. Food Sci. Food Saf.20201963219324010.1111/1541‑4337.1262633337047
    [Google Scholar]
  56. de RijkeE. OutP. NiessenW.M.A. ArieseF. GooijerC. BrinkmanU.A.T. Analytical separation and detection methods for flavonoids.J. Chromatogr. A200611121-2316310.1016/j.chroma.2006.01.01916480997
    [Google Scholar]
  57. Molnár-PerlI. FüzfaiZ. Chromatographic, capillary electrophoretic and capillary electrochromatographic techniques in the analysis of flavonoids.J. Chromatogr. A200510731-220122710.1016/j.chroma.2004.10.06815909523
    [Google Scholar]
  58. BuelgaSC ManzanoGS DueñasM ParamasGAM Extraction and isolation of phenolic compounds.Methods Mol Biol201286442746410.1007/978‑1‑61779‑624‑1_17
    [Google Scholar]
  59. AlamW. KhanH. ShahM.A. CauliO. SasoL. Kaempferol as a dietary anti-inflammatory agent: current therapeutic standing.Molecules20202518407310.3390/molecules2518407332906577
    [Google Scholar]
  60. LigorM. RatiuI.A. KiełbasaA. Al-SuodH. BuszewskiB. Extraction approaches used for the determination of biologically active compounds (cyclitols, polyphenols and saponins) isolated from plant material.Electrophoresis201839151860187410.1002/elps.20170043129603754
    [Google Scholar]
  61. DesaiS. TatkeP. Phytochemical markers: Classification, applications and isolation.Curr. Pharm. Des.201925222491249810.2174/138161282566619070920323931584364
    [Google Scholar]
  62. DhimanP. MalikN. Sobarzo-SánchezE. UriarteE. KhatkarA. Quercetin and related chromenone derivatives as monoamine oxidase inhibitors: Targeting neurological and mental disorders.Molecules201924341810.3390/molecules2403041830678358
    [Google Scholar]
  63. JanR. KhanM. AsafS. Lubna AsifS. KimK.M. Bioactivity and therapeutic potential of kaempferol and quercetin: New insights for plant and human health.Plants20221119262310.3390/plants1119262336235488
    [Google Scholar]
  64. GothaiS. GanesanP. ParkS.Y. FakuraziS. ChoiD.K. ArulselvanP. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target.Nutrients20168846110.3390/nu808046127527213
    [Google Scholar]
  65. ChiangM.C. TsaiT.Y. WangC.J. The potential benefits of quercetin for brain health: A review of anti-inflammatory and neuroprotective mechanisms.Int. J. Mol. Sci.2023247632810.3390/ijms2407632837047299
    [Google Scholar]
  66. KaruppagounderV. ArumugamS. ThandavarayanR.A. SreedharR. GiridharanV.V. WatanabeK. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis.Drug Discov. Today201621463263910.1016/j.drudis.2016.02.01126905599
    [Google Scholar]
  67. RogerioA.P. DoraC.L. AndradeE.L. ChavesJ.S. SilvaL.F.C. SennaE.L. CalixtoJ.B. Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice.Pharmacol. Res.201061428829719892018
    [Google Scholar]
  68. RatheeP. ChaudharyH. RatheeS. RatheeD. KumarV. KohliK. Mechanism of action of flavonoids as anti-inflammatory agents: A review.Inflamm. Allergy Drug Targets20098322923510.2174/18715280978868102919601883
    [Google Scholar]
  69. OzgenS. KilincO.K. SelamoğluZ. Antioxidant activity of quercetin: A mechanistic review.Turkish J. Agricult. - Food Sci. Technol.20164121134113810.24925/turjaf.v4i12.1134‑1138.1069
    [Google Scholar]
  70. XuD. HuM.J. WangY.Q. CuiY.L. Antioxidant activities of quercetin and its complexes for medicinal application.Molecules2019246112310.3390/molecules2406112330901869
    [Google Scholar]
  71. SaccolR.D.S.P. SilveiraK.L.D. ManzoniA.G. AbdullaF.H. OliveiraJ.S.D. DornellesG.L. Antioxidant, hepatoprotective, genoprotective, and cytoprotective effects of quercetin in a murine model of arthritis.J Cell Biochem202012142792280131691375
    [Google Scholar]
  72. FardG.S. ShooreiH. SasiK.A. TaheriM. AyatollahiS.A. The impact of the phytotherapeutic agent quercetin on expression of genes and activity of signaling pathways.Biomed. Pharmacother.202114111184710.1016/j.biopha.2021.11184734198048
    [Google Scholar]
  73. PisoschiA.M. IordacheF. StancaL. GajailaI. GhimpeteanuO.M. GeicuO.I. BilteanuL. SerbanA.I. Antioxidant, anti-inflammatory, and immunomodulatory roles of nonvitamin antioxidants in anti-SARS-CoV-2 therapy.J. Med. Chem.20226519125621259310.1021/acs.jmedchem.2c0113436136726
    [Google Scholar]
  74. ElsheikhM.A. ElnaggarY.S.R. AbdallahO.Y. Rationale employment of cell culture versus conventional techniques in pharmaceutical appraisal of nanocarriers.J. Control. Release20141949210210.1016/j.jconrel.2014.08.01925194779
    [Google Scholar]
  75. DasB. SarkarC. RawatV.S. KalitaD. DekaS. AgnihotriA. Promise of the NLRP3 inflammasome inhibitors in in vivo disease models.Molecules20212616499610.3390/molecules2616499634443594
    [Google Scholar]
  76. SuJ. ChenX. XieY. LiM. ShangQ. ZhangD. CaiX. LiuH. HuangH. ZhengC. HanL. Clinical efficacy, pharmacodynamic components, and molecular mechanisms of antiviral granules in the treatment of influenza: A systematic review.J. Ethnopharmacol.2024318Pt B11701110.1016/j.jep.2023.11701137567423
    [Google Scholar]
  77. D’AndreaG. Quercetin: A flavonol with multifaceted therapeutic applications?Fitoterapia201510625627110.1016/j.fitote.2015.09.01826393898
    [Google Scholar]
  78. FulfagerA.D. YadavK.S. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer.J. Drug Deliv. Sci. Technol.20216210240510.1016/j.jddst.2021.102405
    [Google Scholar]
  79. OršolićN. JembrekJ.M. Molecular and cellular mechanisms of propolis and its polyphenolic compounds against cancer.Int. J. Mol. Sci.202223181047910.3390/ijms23181047936142391
    [Google Scholar]
  80. BlockKI GyllenhaalC LoweL AmedeiA AminAR AminA AquilanoK ArbiserJ ArreolaA ArzumanyanA AshrafSS Designing a broad-spectrum integrative approach for cancer prevention and treatment.Seminars in cancer biologyAcademic Press201535S276S30410.1016/j.semcancer.2015.09.007
    [Google Scholar]
  81. SimioniC. ZauliG. MartelliA.M. VitaleM. SacchettiG. GonelliA. NeriL.M. Oxidative stress: Role of physical exercise and antioxidant nutraceuticals in adulthood and aging.Oncotarget2018924171811719810.18632/oncotarget.2472929682215
    [Google Scholar]
  82. KubatkaP. MazurakovaA. SamecM. KoklesovaL. ZhaiK. AL-IshaqR. KajoK. BiringerK. VybohovaD. BrockmuellerA. PecM. ShakibaeiM. GiordanoF.A. BüsselbergD. GolubnitschajaO. Flavonoids against non-physiologic inflammation attributed to cancer initiation, development, and progression—3PM pathways.EPMA J.202112455958710.1007/s13167‑021‑00257‑y34950252
    [Google Scholar]
  83. WangY. TaoB. WanY. SunY. WangL. SunJ. LiC. Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases.Biomed. Pharmacother.202012811037210.1016/j.biopha.2020.11037232521458
    [Google Scholar]
  84. ShankarE. GoelA. GuptaK. GuptaS. Plant flavone apigenin: An emerging anticancer agent.Curr. Pharmacol. Rep.20173642344610.1007/s40495‑017‑0113‑229399439
    [Google Scholar]
  85. PonnampalamE.N. KianiA. SanthiravelS. HolmanB.W.B. LauridsenC. DunsheaF.R. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality—Invited review.Animals20221223327910.3390/ani1223327936496798
    [Google Scholar]
  86. GarcíaB.O. CastilloJ. Update on uses and properties of citrus flavonoids: New findings in anticancer, cardiovascular, and anti-inflammatory activity.J. Agric. Food Chem.200856156185620510.1021/jf800656818593176
    [Google Scholar]
  87. ŻwierełłoW. MaruszewskaA. MajewiczS.M. GoschorskaM. BosiackaB.I. DecK. StyburskiD. NowakowskaA. GutowskaI. The influence of polyphenols on metabolic disorders caused by compounds released from plastics - Review.Chemosphere202024012490110.1016/j.chemosphere.2019.12490131563713
    [Google Scholar]
  88. ZhangH. TsaoR. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects.Curr. Opin. Food Sci.20168334210.1016/j.cofs.2016.02.002
    [Google Scholar]
  89. FortunatoL.R. AlvesC.F. TeixeiraM.M. RogerioA.P. Quercetin: A flavonoid with the potential to treat asthma.Braz. J. Pharm. Sci.201248458959910.1590/S1984‑82502012000400002
    [Google Scholar]
  90. NovelliM. MasielloP. BeffyP. MenegazziM. Protective role of St. John’s wort and its components hyperforin and hypericin against diabetes through inhibition of inflammatory signaling: Evidence from in vitro and in vivo studies.Int. J. Mol. Sci.20202121810810.3390/ijms2121810833143088
    [Google Scholar]
  91. El-ShinnawiU. SooryM. Associations between periodontitis and systemic inflammatory diseases: Response to treatment.Recent Pat. Endocr. Metab. Immune Drug Discov.20137316918810.2174/1871530311313999004023909844
    [Google Scholar]
  92. KhanF. NiazK. MaqboolF. Ismail HassanF. AbdollahiM. VenkataN.K. NabaviS. BishayeeA. Molecular targets underlying the anticancer effects of quercetin: An update.Nutrients20168952910.3390/nu809052927589790
    [Google Scholar]
  93. AlmatroodiS.A. AlsahliM.A. AlmatroudiA. VermaA.K. AloliqiA. AllemailemK.S. KhanA.A. RahmaniA.H. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways.Molecules2021265131510.3390/molecules2605131533804548
    [Google Scholar]
  94. GilliesA.R. LieberR.L. Structure and function of the skeletal muscle extracellular matrix.Muscle Nerve201144331833110.1002/mus.2209421949456
    [Google Scholar]
  95. RomesN.B. WahabA.R. HamidA.M. The role of bioactive phytoconstituents-loaded nanoemulsions for skin improvement: A review.Biotechnol. Biotechnol. Equip.202135171173010.1080/13102818.2021.1915869
    [Google Scholar]
  96. MieczanW.A. MieczanT. WójcikG. Importance of redox equilibrium in the pathogenesis of psoriasis—impact of antioxidant-rich diet.Nutrients2020126184110.3390/nu1206184132575706
    [Google Scholar]
  97. ChiuH.F. VenkatakrishnanK. GolovinskaiaO. WangC.K. Gastroprotective effects of polyphenols against various gastro-intestinal disorders: A mini-review with special focus on clinical evidence.Molecules2021267209010.3390/molecules2607209033917379
    [Google Scholar]
  98. StefanieYE RauM MichaelAM UeberallA Combination of enzymes and rutin to manage osteoarthritis symptoms: Lessons from a narrative review of the literature.Rheumatol Ther20229513051327
    [Google Scholar]
  99. GouveiaV.M. LimaS.C.A. NunesC. ReisS. Non-biologic nanodelivery therapies for Rheumatoid arthritis.J. Biomed. Nanotechnol.201511101701172110.1166/jbn.2015.215926502635
    [Google Scholar]
  100. YadavB.K. KaurJ. KumarN. VyasM. BasharyR. MittalA. HaneefJ. KhatikG.L. Quercetin as an important nutraceutical and medicinal agent.Plant Arch.202020225372547
    [Google Scholar]
  101. NyandoroV.O. OmoloC.A. IsmailE.A. YongL. GovenderT. Inflammation-responsive drug delivery nanosystems for treatment of bacterial-induced sepsis.Int. J. Pharm.202364412334610.1016/j.ijpharm.2023.12334637633537
    [Google Scholar]
  102. FerrerM.D. Busquets-CortésC. CapóX. TejadaS. TurJ.A. PonsA. SuredaA. Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases.Curr. Med. Chem.201926183225324110.2174/092986732566618051411212429756563
    [Google Scholar]
  103. RameshP. JagadeesanR. SekaranS. DhanasekaranA. VimalrajS. Flavonoids: classification, function, and molecular mechanisms involved in bone remodelling.Front. Endocrinol.20211277963810.3389/fendo.2021.77963834887836
    [Google Scholar]
  104. RufinoA.T. FreitasM. ProençaC. de OliveiraF.J.M. FernandesE. RibeiroD. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy.Med. Res. Rev.202344249753837602483
    [Google Scholar]
  105. ChakrabortyD. GuptaK. BiswasS. A mechanistic insight of phytoestrogens used for Rheumatoid arthritis: An evidence-based review.Biomed. Pharmacother.202113311103910.1016/j.biopha.2020.11103933254019
    [Google Scholar]
  106. ClarkeJ.O. MullinG.E. A review of complementary and alternative approaches to immunomodulation.Nutr. Clin. Pract.2008231496210.1177/01154265080230014918203964
    [Google Scholar]
  107. SpagnuoloC. MocciaS. RussoG.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders.Eur. J. Med. Chem.201815310511510.1016/j.ejmech.2017.09.00128923363
    [Google Scholar]
  108. UedaN. A rheostat of ceramide and sphingosine-1-phosphate as a determinant of oxidative stress-mediated kidney injury.Int. J. Mol. Sci.2022237401010.3390/ijms2307401035409370
    [Google Scholar]
  109. RahimanN. MarkinaY.V. KesharwaniP. JohnstonT.P. SahebkarA. Curcumin-based nanotechnology approaches and therapeutics in restoration of autoimmune diseases.J. Control. Release202234826428610.1016/j.jconrel.2022.05.04635649486
    [Google Scholar]
  110. ZhouQ. RenQ. JiaoL. HuangJ. YiJ. ChenJ. LaiJ. JiG. ZhengT. The potential roles of JAK/STAT signaling in the progression of osteoarthritis.Front. Endocrinol.202213106905710.3389/fendo.2022.106905736506076
    [Google Scholar]
  111. AkterR. RahmanM.R. AhmedZ.S. AfroseA. Plausibility of natural immunomodulators in the treatment of COVID-19–A comprehensive analysis and future recommendations.Heliyon202396e1747810.1016/j.heliyon.2023.e1747837366526
    [Google Scholar]
  112. HunterS.R. Induction of the rat hepatic aryl hydrocarbon receptor nuclear translocator by glucocorticoidsCanadaUniversity of Toronto2014
    [Google Scholar]
  113. Al-OkbiS.Y. Nutraceuticals of anti-inflammatory activity as complementary therapy for rheumatoid arthritis.Toxicol. Ind. Health201430873874910.1177/074823371246246823104728
    [Google Scholar]
/content/journals/crr/10.2174/0115733971280645240415101912
Loading
/content/journals/crr/10.2174/0115733971280645240415101912
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammatory; arthritis; extraction techniques; flavonoid; Quercetin; wound healing
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test