Skip to content
2000
image of Investigating Biomarkers and Molecular Mechanisms in COPD: Perspectives from In-vivo Models

Abstract

Purpose

This review examines COPD pathogenesis, biomarkers, and treatment. COPD, a progressive respiratory illness that blocks airflow, causes high morbidity and death. The complicated pathophysiology of COPD involves genetic predisposition, environmental variables (particularly tobacco smoke), and inflammatory pathways. COPD diagnosis, prognosis, and monitoring depend on biomarkers in clinical and preclinical investigations. COPD care should include pharmaceutical and non-pharmacological therapies to improve symptoms, lung function, and outcomes.

Materials and Method

This review examines COPD pathogenesis, cytokines, and risk factors. This review article discusses how immune system signalling molecules called cytokines contribute to COPD's persistent inflammation. Smoking and environmental contaminants are also examined as COPD risk factors. The analysis also covers biomarkers needed to diagnose and track the condition.

Results

The review paper on COPD highlights the critical role of cytokines in the disease's pathophysiology, emphasizing their contribution to chronic inflammation. Various cytokines, particularly interleukins, are implicated in driving the inflammatory processes within the airways and lungs, resulting in tissue damage and airflow limitation, which are hallmark features of COPD. The paper also identifies smoking and exposure to environmental pollutants as major risk factors for the development of COPD.

Conclusion

This review illuminates COPD's complex pathogenesis, highlighting cytokines' involvement in chronic inflammation. To create targeted therapeutics, cytokine-mediated pathways must be understood. The review emphasizes biomarkers' use in preclinical and clinical investigations to diagnose and monitor COPD and provide disease progression insights.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X334447241104114932
2024-11-07
2025-01-09
Loading full text...

Full text loading...

References

  1. Eapen M.S. Myers S. Walters E.H. Sohal S.S. Airway inflammation in chronic obstructive pulmonary disease (COPD): A true paradox. Expert Rev. Respir. Med. 2017 11 10 827 839 10.1080/17476348.2017.1360769
    [Google Scholar]
  2. Safiri S. Carson-Chahhoud K. Noori M. Nejadghaderi S.A. Sullman M.J.M. Ahmadian Heris J. Ansarin K. Mansournia M.A. Collins G.S. Kolahi A-A. Kaufman J.S. Burden of chronic obstructive pulmonary disease and its attributable risk factors in 204 countries and territories, 1990-2019: Results from the Global burden of disease study 2019. BMJ 2022 e069679 10.1136/bmj‑2021‑069679
    [Google Scholar]
  3. NINGSIH Effectiveness of pursed lip breathing on increasing oxygen saturation in copd patients with rbbb symptoms. [PHD Thesis] Muhammadiyah University of Malang. 2023
    [Google Scholar]
  4. Alfahad A.J. Alzaydi M.M. Aldossary A.M. Alshehri A.A. Almughem F.A. Zaidan N.M. Tawfik E.A. Current views in chronic obstructive pulmonary disease pathogenesis and management. Saudi Pharm. J. 2021 29 12 1361 1373 10.1016/j.jsps.2021.10.008
    [Google Scholar]
  5. Vogelmeier C.F. Román-Rodríguez M. Singh D. Han M.L.K. Rodríguez-Roisin R. Ferguson G.T. Goals of COPD treatment: Focus on symptoms and exacerbations. Respir. Med. 2020 166 105938 10.1016/j.rmed.2020.105938
    [Google Scholar]
  6. Miravitlles M. Ribera A. Understanding the impact of symptoms on the burden of COPD. Respir. Res. 2017 18 1 67 10.1186/s12931‑017‑0548‑3
    [Google Scholar]
  7. 2017
  8. PRASAD Chronic obstructive pulmonary disease (COPD). Int. J. Pharm. Res.Technol 2020 10 1 67 71
    [Google Scholar]
  9. Soriano J.B. Visick G.T. Muellerova H. Payvandi N. Hansell A.L. Patterns of comorbidities in newly diagnosed COPD and asthma in primary care. Chest 2005 128 4 2099 2107 10.1378/chest.128.4.2099
    [Google Scholar]
  10. Wagena E. Huibers M. Van Schayck C. Antidepressants in the treatment of patients with COPD: possible associations between smoking cigarettes, COPD and depression. Thorax 2001 56 587 588
    [Google Scholar]
  11. Agusti A. Celli B. Avoiding confusion in COPD: From risk factors to phenotypes to measures of disease characterisation. Eur Respiratory Soc. 2011 749 751
    [Google Scholar]
  12. Vestbo J. Lange P. Can GOLD Stage 0 provide information of prognostic value in chronic obstructive pulmonary disease? Am. J. Respir. Crit. Care Med. 2002 166 3 329 332 10.1164/rccm.2112048
    [Google Scholar]
  13. Soriano J.B. Polverino F. Cosio B.G. What is early COPD and why is it important? Eur. Respir. J. 2018 52 6 1801448 10.1183/13993003.01448‑2018
    [Google Scholar]
  14. Lahousse L. Loth D.W. Joos G.F. Hofman A. Leufkens H.G.M. Brusselle G.G. Stricker B.H. Statins, systemic inflammation and risk of death in COPD: The Rotterdam study. Pulm. Pharmacol. Ther. 2013 26 2 212 217 10.1016/j.pupt.2012.10.008
    [Google Scholar]
  15. Kaplan A. Levitz S. Use of spirometry in family practice in Canada; Results of a nationwide survey. Eur Respiratory Soc. 2016 46 59 PA4064 10.1183/13993003.congress‑2016.PA3938
    [Google Scholar]
  16. Kaplan A. Thomas M. Screening for COPD: The gap between logic and evidence. Eur. Respir. Rev. 2017 26 143 160113 10.1183/16000617.0113‑2016
    [Google Scholar]
  17. Celli B.R. Update on the management of COPD. Chest 2008 133 6 1451 1462 10.1378/chest.07‑2061
    [Google Scholar]
  18. Stockley R.A. Neutrophils and the pathogenesis of COPD. Chest 2002 121 5 151S 155S 10.1378/chest.121.5_suppl.151S
    [Google Scholar]
  19. Tetley T.D. Macrophages and the pathogenesis of COPD. Chest 2002 121 5 156S 159S 10.1378/chest.121.5_suppl.156S
    [Google Scholar]
  20. Barnes P.J. Cosio M.G. Characterization of T lymphocytes in chronic obstructive pulmonary disease. PLoS Med. 2004 1 1 e20 10.1371/journal.pmed.0010020
    [Google Scholar]
  21. MacNee W. Oxidants/antioxidants and COPD. Chest 2000 117 5 303S 317S 10.1378/chest.117.5_suppl_1.303S‑a
    [Google Scholar]
  22. Brashier B.B. Kodgule R. Risk factors and pathophysiology of chronic obstructive pulmonary disease (COPD). J. Assoc. Physicians India 2012 60 Suppl. 17 21
    [Google Scholar]
  23. Liu Y. Li A. Feng X. Sun X. Zhu X. Zhao Z. Pharmacological investigation of the anti-inflammation and anti-oxidation activities of diallyl disulfide in a rat emphysema model induced by cigarette smoke extract. Nutrients 2018 10 1 79 10.3390/nu10010079
    [Google Scholar]
  24. Chen H. Wang D. Bai C. Wang X. Proteomics-based biomarkers in chronic obstructive pulmonary disease. J. Proteome Res. 2010 9 6 2798 2808 10.1021/pr100063r
    [Google Scholar]
  25. Kong J. Fan R. Zhang Y. Jia Z. Zhang J. Pan H. Wang Q. Oxidative stress in the brain–lung crosstalk: cellular and molecular perspectives. Front. Aging Neurosci. 2024 16 1389454 10.3389/fnagi.2024.1389454
    [Google Scholar]
  26. Korkmaz B. Horwitz M.S. Jenne D.E. Gauthier F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev. 2010 62 4 726 759 10.1124/pr.110.002733
    [Google Scholar]
  27. T. O. P. G. Global initiative for chronic obstructive lung Am. J. Respir. Crit. Care. Med 2018 197 1 10.1164.
    [Google Scholar]
  28. Brinkman J.E. Toro F. Sharma S. Physiology, Respiratory Drive. StatPearls Treasure Island 2018
    [Google Scholar]
  29. O’Donnell D.E. Laveneziana P. Physiology and consequences of lung hyperinflation in COPD. Eur. Respir. Rev. 2006 15 100 61 67 10.1183/09059180.00010002
    [Google Scholar]
  30. Powers K.A. Dhamoon A.S. Physiology, pulmonary ventilation and perfusion. StatPearls Treasure Island 2019
    [Google Scholar]
  31. Shapiro S. The pathophysiology of COPD: What go wrong and why. Proceedings. Adv. Stud. Med. 2003 3 2B S91 S98
    [Google Scholar]
  32. Dotan Y. So J.Y. Kim V. Chronic bronchitis: where are we now? Chronic Obstructive Pulmonary Diseases. Chronic Obstr. Pulm. Dis. (Miami) 2019 6 2 178 192 10.15326/jcopdf.6.2.2018.0151
    [Google Scholar]
  33. Ferris B. Epidemiology standardization project. II. Recommended respiratory disease questionnaires for use with adults and children in epidemiological research. Am. Rev. Respir. Dis. 1978 118 6 7 53
    [Google Scholar]
  34. Devine J.F. Chronic obstructive pulmonary disease: An overview. Am. Health. Drug. Benefits 2008 1 7 34
    [Google Scholar]
  35. Larsen B.T. Smith M.L. Elicker B.M. Fernandez J.M. de Morvil G.A.A-O. Pereira C.A.C. Leslie K.O. Diagnostic approach to advanced fibrotic interstitial lung disease: Bringing together clinical, radiologic, and histologic clues. Arch. Pathol. Lab. Med. 2017 141 7 901 915 10.5858/arpa.2016‑0299‑SA
    [Google Scholar]
  36. Kim V. Criner G.J. Chronic bronchitis and chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2013 187 3 228 237 10.1164/rccm.201210‑1843CI
    [Google Scholar]
  37. Jelic T.M. Emphysema Update in Respiratory Diseases IntechOpen 2019
    [Google Scholar]
  38. Villa B. Erranz B. Cruces P. Retamal J. Hurtado D.E. Mechanical and morphological characterization of the emphysematous lung tissue. Acta Biomater. 2024 181 282 296 10.1016/j.actbio.2024.04.039
    [Google Scholar]
  39. Clini E. Anne E. Fabio p. Textbook of pulmonary rehabilitation. Springer 2018 10.1007/978‑3‑319‑65888‑9
    [Google Scholar]
  40. Shah P.L. Herth F.J. van Geffen W.H. Deslee G. Slebos D-J. Lung volume reduction for emphysema. Lancet Respir. Med. 2017 5 2 147 156 10.1016/S2213‑2600(16)30221‑1
    [Google Scholar]
  41. Kemp S.V. Polkey M.I. Shah P.L. The epidemiology, etiology, clinical features, and natural history of emphysema. Thorac. Surg. Clin. 2009 19 2 149 158 10.1016/j.thorsurg.2009.03.003
    [Google Scholar]
  42. Goldklang M. Stockley R. Pathophysiology of emphysema and implications. Chronic Obstr. Pulm. Dis. (Miami) 2016 3 1 454 458 10.15326/jcopdf.3.1.2015.0175
    [Google Scholar]
  43. Yang I.A. Jenkins C.R. Salvi S.S. Chronic obstructive pulmonary disease in never-smokers: risk factors, pathogenesis, and implications for prevention and treatment. Lancet Respir. Med. 2022 10 5 497 511 10.1016/S2213‑2600(21)00506‑3
    [Google Scholar]
  44. Guenegou A. Boczkowski J. Aubier M. Neukirch F. Leynaert B. Interaction between a heme oxygenase-1 gene promoter polymorphism and serum β-carotene levels on 8-year lung function decline in a general population: The European Community Respiratory Health Survey (France). Am. J. Epidemiol. 2007 167 2 139 144 10.1093/aje/kwm282
    [Google Scholar]
  45. Caramori G. Kirkham P. Barczyk A. Di Stefano A. Adcock I. Molecular pathogenesis of cigarette smoking–induced stable COPD. Ann. N. Y. Acad. Sci. 2015 1340 1 55 64 10.1111/nyas.12619
    [Google Scholar]
  46. Barnes P.J. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin. Chest Med. 2014 35 1 71 86 10.1016/j.ccm.2013.10.004
    [Google Scholar]
  47. Caramori G. Stefano A. Casolari P. Kirkham P.A. Padovani A. Chung K.F. Papi A. Adcock I.M. Chemokines and chemokine receptors blockers as new drugs for the treatment of chronic obstructive pulmonary disease. Curr. Med. Chem. 2013 20 35 4317 4349 10.2174/09298673113206660261
    [Google Scholar]
  48. Caramori G. Cytokine inhibition in the treatment of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2014 397 412
    [Google Scholar]
  49. Xue J. Schmidt S.V. Sander J. Draffehn A. Krebs W. Quester I. De Nardo D. Gohel T.D. Emde M. Schmidleithner L. Ganesan H. Nino-Castro A. Mallmann M.R. Labzin L. Theis H. Kraut M. Beyer M. Latz E. Freeman T.C. Ulas T. Schultze J.L. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014 40 2 274 288 10.1016/j.immuni.2014.01.006
    [Google Scholar]
  50. Caramori G. Casolari P. Adcock I. Role of transcription factors in the pathogenesis of asthma and COPD. Cell Commun. Adhes. 2013 20 1-2 21 40 10.3109/15419061.2013.775257
    [Google Scholar]
  51. Korn R.J. Dockery D.W. Speizer F.E. Ware J.H. Ferris B.G. Jr Occupational exposures and chronic respiratory symptoms. Am. Rev. Respir. Dis. 1987 136 2 298 304 10.1164/ajrccm/136.2.298
    [Google Scholar]
  52. Hagstad S. Backman H. Bjerg A. Ekerljung L. Ye X. Hedman L. Lindberg A. Torén K. Lötvall J. Rönmark E. Lundbäck B. Prevalence and risk factors of COPD among never-smokers in two areas of Sweden – Occupational exposure to gas, dust or fumes is an important risk factor. Respir. Med. 2015 109 11 1439 1445 10.1016/j.rmed.2015.09.012
    [Google Scholar]
  53. Johannessen A. Implications of reversibility testing on prevalence and risk factors for chronic obstructive pulmonary disease: a community study. Thorax 2005 60 10 842 847 10.1136/thx.2005.043943
    [Google Scholar]
  54. Tagiyeva N. Sadhra S. Mohammed N. Fielding S. Devereux G. Teo E. Ayres J. Graham Douglas J. Occupational airborne exposure in relation to Chronic Obstructive Pulmonary Disease (COPD) and lung function in individuals without childhood wheezing illness: A 50-year cohort study. Environ. Res. 2017 153 126 134 10.1016/j.envres.2016.11.018
    [Google Scholar]
  55. Liang G.B. He Z.H. Animal models of emphysema. Chin. Med. J. (Engl.) 2019 132 20 2465 2475 10.1097/CM9.0000000000000469
    [Google Scholar]
  56. Minov J. Occupational chronic obstructive pulmonary disorder: prevalence and prevention. Expert Rev. Respir. Med. 2022 16 4 429 436
    [Google Scholar]
  57. Rodríguez E. Ferrer J. Martí S. Zock J-P. Plana E. Morell F. Impact of occupational exposure on severity of COPD. Chest 2008 134 6 1237 1243 10.1378/chest.08‑0622
    [Google Scholar]
  58. Silver S.R. Alarcon W.A. Li J. Incident chronic obstructive pulmonary disease associated with occupation, industry, and workplace exposures in the Health and Retirement Study. Am. J. Ind. Med. 2021 64 1 26 38 10.1002/ajim.23196
    [Google Scholar]
  59. Murgia N. Gambelunghe A. Occupational COPD —The most under-recognized occupational lung disease? Respirology 2022 27 6 399 410 10.1111/resp.14272
    [Google Scholar]
  60. Frank E.F. Ferrer J. Charles P. Richard T. Cecily S. The Natural history of chronic bronchitis and emphysema: An eight-year study of early chronic obstructive lung disease in working men in London. Oxford University Press 1976
    [Google Scholar]
  61. Mannino D.M. Buist A.S. Global burden of COPD: Risk factors, prevalence, and future trends. Lancet 2007 370 9589 765 773 10.1016/S0140‑6736(07)61380‑4
    [Google Scholar]
  62. Mannino D.M. Davis K.J. Lung function decline and outcomes in an elderly population. Thorax 2006 61 6 472 477 10.1136/thx.2005.052449
    [Google Scholar]
  63. Jemal A. Trends in the leading causes of death in the United States, 1970-2002. JAMA 2005 294 10 1255 1259 10.1001/jama.294.10.1255
    [Google Scholar]
  64. Wedzicha J.A. Seemungal T.A.R. COPD exacerbations: Defining their cause and prevention. Lancet 2007 370 9589 786 796 10.1016/S0140‑6736(07)61382‑8
    [Google Scholar]
  65. Singh D. Agusti A. Anzueto A. Barnes P.J. Bourbeau J. Celli B.R. Criner G.J. Frith P. Halpin D.M.G. Han M. López Varela M.V. Martinez F. Montes de Oca M. Papi A. Pavord I.D. Roche N. Sin D.D. Stockley R. Vestbo J. Wedzicha J.A. Vogelmeier C. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: The GOLD science committee report 2019. Eur. Respir. J. 2019 53 5 1900164 10.1183/13993003.00164‑2019
    [Google Scholar]
  66. Soriano J.B. Abajobir A.A. Abate K.H. Abera S.F. Agrawal A. Ahmed M.B. Aichour A.N. Aichour I. Aichour M.T.E. Alam K. Alam N. Alkaabi J.M. Al-Maskari F. Alvis-Guzman N. Amberbir A. Amoako Y.A. Ansha M.G. Antó J.M. Asayesh H. Atey T.M. Avokpaho E.F.G.A. Barac A. Basu S. Bedi N. Bensenor I.M. Berhane A. Beyene A.S. Bhutta Z.A. Biryukov S. Boneya D.J. Brauer M. Carpenter D.O. Casey D. Christopher D.J. Dandona L. Dandona R. Dharmaratne S.D. Do H.P. Fischer F. Gebrehiwot T.T. Geleto A. Ghoshal A.G. Gillum R.F. Ginawi I.A.M. Gupta V. Hay S.I. Hedayati M.T. Horita N. Hosgood H.D. Jakovljevic M.M.B. James S.L. Jonas J.B. Kasaeian A. Khader Y.S. Khalil I.A. Khan E.A. Khang Y-H. Khubchandani J. Knibbs L.D. Kosen S. Koul P.A. Kumar G.A. Leshargie C.T. Liang X. El Razek H.M.A. Majeed A. Malta D.C. Manhertz T. Marquez N. Mehari A. Mensah G.A. Miller T.R. Mohammad K.A. Mohammed K.E. Mohammed S. Mokdad A.H. Naghavi M. Nguyen C.T. Nguyen G. Le Nguyen Q. Nguyen T.H. Ningrum D.N.A. Nong V.M. Obi J.I. Odeyemi Y.E. Ogbo F.A. Oren E. Pa M. Park E-K. Patton G.C. Paulson K. Qorbani M. Quansah R. Rafay A. Rahman M.H.U. Rai R.K. Rawaf S. Reinig N. Safiri S. Sarmiento-Suarez R. Sartorius B. Savic M. Sawhney M. Shigematsu M. Smith M. Tadese F. Thurston G.D. Topor-Madry R. Tran B.X. Ukwaja K.N. van Boven J.F.M. Vlassov V.V. Vollset S.E. Wan X. Werdecker A. Hanson S.W. Yano Y. Yimam H.H. Yonemoto N. Yu C. Zaidi Z. El Sayed Zaki M. Lopez A.D. Murray C.J.L. Vos T. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir. Med. 2017 5 9 691 706 10.1016/S2213‑2600(17)30293‑X
    [Google Scholar]
  67. Rycroft C. Heyes Lanza Karin Epidemiology of chronic obstructive pulmonary disease: A literature review. Int. J. Chron. Obstruct. Pulmon. Dis. 2012 457 494 10.2147/COPD.S32330
    [Google Scholar]
  68. Ruvuna L. Sood A. Epidemiology of chronic obstructive pulmonary disease. Clin. Chest Med. 2020 41 3 315 327 10.1016/j.ccm.2020.05.002
    [Google Scholar]
  69. Mitra S. Anand U. Ghorai M. Vellingiri B. Jha N.K. Behl T. Kumar M. Radha Shekhawat M.S. Proćków J. Dey A. Unravelling the therapeutic potential of botanicals against chronic obstructive pulmonary disease (COPD): Molecular insights and future perspectives. Front. Pharmacol. 2022 13 824132 10.3389/fphar.2022.824132
    [Google Scholar]
  70. Adeloye D. Chua S. Lee C. Basquill C. Papana A. Theodoratou E. Nair H. Gasevic D. Sridhar D. Campbell H. Chan K.Y. Sheikh A. Rudan I. Global and regional estimates of COPD prevalence: Systematic review and meta–analysis. J. Glob. Health 2015 5 2 020415 10.7189/jogh.05.020415
    [Google Scholar]
  71. Group B.D.W. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001 69 3 89 95 10.1067/mcp.2001.113989
    [Google Scholar]
  72. Pantazopoulos I. Magounaki K. Kotsiou O. Rouka E. Perlikos F. Kakavas S. Gourgoulianis K. Incorporating biomarkers in COPD management: The research keeps going. J. Pers. Med. 2022 12 3 379 10.3390/jpm12030379
    [Google Scholar]
  73. Takahashi T. Kobayashi S. Fujino N. Suzuki T. Ota C. Tando Y. Yamada M. Yanai M. Yamaya M. Kurosawa S. Yamauchi M. Kubo H. Annual FEV 1 changes and numbers of circulating endothelial microparticles in patients with COPD: a prospective study. BMJ Open 2014 4 3 e004571 10.1136/bmjopen‑2013‑004571
    [Google Scholar]
  74. Ho T. Dasgupta A. Hargreave F.E. Nair P. The use of cellular and molecular biomarkers to manage COPD exacerbations. Expert Rev. Respir. Med. 2017 11 5 1 9 10.1080/17476348.2017.1307738
    [Google Scholar]
  75. Agustí A. Edwards L.D. Rennard S.I. MacNee W. Tal-Singer R. Miller B.E. Vestbo J. Lomas D.A. Calverley P.M.A. Wouters E. Crim C. Yates J.C. Silverman E.K. Coxson H.O. Bakke P. Mayer R.J. Celli B. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: A novel phenotype. PLoS One 2012 7 5 e37483 10.1371/journal.pone.0037483
    [Google Scholar]
  76. Thomsen M. Dahl M. Lange P. Vestbo J. Nordestgaard B.G. Inflammatory biomarkers and comorbidities in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2012 186 10 982 988 10.1164/rccm.201206‑1113OC
    [Google Scholar]
  77. Hurst J.R. Anzueto A. Vestbo J. Susceptibility to exacerbation in COPD. Lancet Respir. Med. 2017 5 9 e29 10.1016/S2213‑2600(17)30307‑7
    [Google Scholar]
  78. Müllerova H. Maselli D.J. Locantore N. Vestbo J. Hurst J.R. Wedzicha J.A. Bakke P. Agusti A. Anzueto A. Hospitalized exacerbations of COPD. Chest 2015 147 4 999 1007 10.1378/chest.14‑0655
    [Google Scholar]
  79. Pavord I.D. Lettis S. Locantore N. Pascoe S. Jones P.W. Wedzicha J.A. Barnes N.C. Blood eosinophils and inhaled corticosteroid/long-acting β-2 agonist efficacy in COPD. Thorax 2016 71 2 118 125 10.1136/thoraxjnl‑2015‑207021
    [Google Scholar]
  80. Pascoe S. Locantore N. Dransfield M.T. Barnes N.C. Pavord I.D. Blood eosinophil counts, exacerbations, and response to the addition of inhaled fluticasone furoate to vilanterol in patients with chronic obstructive pulmonary disease: A secondary analysis of data from two parallel randomised controlled trials. Lancet Respir. Med. 2015 3 6 435 442 10.1016/S2213‑2600(15)00106‑X
    [Google Scholar]
  81. Siddiqui S.H. Guasconi A. Vestbo J. Jones P. Agusti A. Paggiaro P. Wedzicha J.A. Singh D. Blood eosinophils: A biomarker of response to extrafine beclomethasone/formoterol in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2015 192 4 523 525 10.1164/rccm.201502‑0235LE
    [Google Scholar]
  82. Magnussen H. Disse B. Rodriguez-Roisin R. Kirsten A. Watz H. Tetzlaff K. Towse L. Finnigan H. Dahl R. Decramer M. Chanez P. Wouters E.F.M. Calverley P.M.A. Withdrawal of inhaled glucocorticoids and exacerbations of COPD. N. Engl. J. Med. 2014 371 14 1285 1294 10.1056/NEJMoa1407154
    [Google Scholar]
  83. Brightling C.E. Pavord I.D. Bafadhel M. Inhaled glucocorticoids and COPD exacerbations. N Engl J Med. 2015 372 1 93
    [Google Scholar]
  84. Watz H. Tetzlaff K. Wouters E.F.M. Kirsten A. Magnussen H. Rodriguez-Roisin R. Vogelmeier C. Fabbri L.M. Chanez P. Dahl R. Disse B. Finnigan H. Calverley P.M.A. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: A post-hoc analysis of the WISDOM trial. Lancet Respir. Med. 2016 4 5 390 398 10.1016/S2213‑2600(16)00100‑4
    [Google Scholar]
  85. Zinellu E. Zinellu A. Fois A.G. Pau M.C. Scano V. Piras B. Carru C. Pirina P. Oxidative stress biomarkers in chronic obstructive pulmonary disease exacerbations: A systematic review. Antioxidants 2021 10 5 710 10.3390/antiox10050710
    [Google Scholar]
  86. Chamitava L. Cazzoletti L. Ferrari M. Garcia-Larsen V. Jalil A. Degan P. Fois A.G. Zinellu E. Fois S.S. Fratta Pasini A.M. Nicolis M. Olivieri M. Corsico A. Bono R. Pirina P. Zanolin M.E. Biomarkers of oxidative stress and inflammation in chronic airway diseases. Int. J. Mol. Sci. 2020 21 12 4339 10.3390/ijms21124339
    [Google Scholar]
  87. Zinellu E. Zinellu A. Fois A.G. Carru C. Pirina P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: A systematic review. Respir. Res. 2016 17 1 150 10.1186/s12931‑016‑0471‑z
    [Google Scholar]
  88. Albrecht E. Sillanpaa E. Karrasch S. Alves A.C. Codd V. Hovatta I. Buxton J.L. Nelson C.P. Broer L. Hagg S. Mangino M. Willemsen G. Surakka I. Ferreira M.A.R. Amin N. Oostra B.A. Backmand H.M. Peltonen M. Sarna S. Rantanen T. Sipila S. Korhonen T. Madden P.A.F. Gieger C. Jorres R.A. Heinrich J. Behr J. Huber R.M. Peters A. Strauch K. Wichmann H.E. Waldenberger M. Blakemore A.I.F. de Geus E.J.C. Nyholt D.R. Henders A.K. Piirila P.L. Rissanen A. Magnusson P.K.E. Vinuela A. Pietilainen K.H. Martin N.G. Pedersen N.L. Boomsma D.I. Spector T.D. van Duijn C.M. Kaprio J. Samani N.J. Jarvelin M-R. Schulz H. Telomere length in circulating leukocytes is associated with lung function and disease. Eur. Respir. J. 2014 43 4 983 992 10.1183/09031936.00046213
    [Google Scholar]
  89. Birch J. Anderson R.K. Correia-Melo C. Jurk D. Hewitt G. Marques F.M. Green N.J. Moisey E. Birrell M.A. Belvisi M.G. Black F. Taylor J.J. Fisher A.J. De Soyza A. Passos J.F. DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015 309 10 L1124 L1137 10.1152/ajplung.00293.2015
    [Google Scholar]
  90. Easter M. Bollenbecker S. Barnes J.W. Krick S. Targeting aging pathways in chronic obstructive pulmonary disease. Int. J. Mol. Sci. 2020 21 18 6924 10.3390/ijms21186924
    [Google Scholar]
  91. Angelis N. Airway inflammation in chronic obstructive pulmonary disease. J. Thorac. Dis. 2014 6 Suppl. 1 S167
    [Google Scholar]
  92. Barnes P.J. Chowdhury B. Kharitonov S.A. Magnussen H. Page C.P. Postma D. Saetta M. Pulmonary biomarkers in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2006 174 1 6 14 10.1164/rccm.200510‑1659PP
    [Google Scholar]
  93. Koutsokera A. Pulmonary biomarkers in COPD exacerbations: A systematic review. Respir. Res. 2013 14 1 12
    [Google Scholar]
  94. Radicioni G. Ceppe A. Ford A.A. Alexis N.E. Barr R.G. Bleecker E.R. Christenson S.A. Cooper C.B. Han M.L.K. Hansel N.N. Hastie A.T. Hoffman E.A. Kanner R.E. Martinez F.J. Ozkan E. Paine R. III Woodruff P.G. O’Neal W.K. Boucher R.C. Kesimer M. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: An analysis of the SPIROMICS cohort. Lancet Respir. Med. 2021 9 11 1241 1254 10.1016/S2213‑2600(21)00079‑5
    [Google Scholar]
  95. Kesimer M. Smith B.M. Ceppe A. Ford A.A. Anderson W.H. Barr R.G. O’Neal W.K. Boucher R.C. Woodruff P.G. Han M.L.K. Hoffman E.A. Martinez F. Curtis J.L. Paine R. III Cooper C.B. Bleecker E.R. Mucin concentrations and peripheral airway obstruction in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2018 198 11 1453 1456 10.1164/rccm.201806‑1016LE
    [Google Scholar]
  96. Fujisawa T. Velichko S. Thai P. Hung L-Y. Huang F. Wu R. Regulation of airway MUC5AC expression by IL-1β and IL-17A; the NF-κB paradigm. J. Immunol. 2009 183 10 6236 6243 10.4049/jimmunol.0900614
    [Google Scholar]
  97. Reid L.V. Spalluto C.M. Watson A. Staples K.J. Wilkinson T.M.A. The role of extracellular vesicles as a shared disease mechanism contributing to multimorbidity in patients with COPD. Front. Immunol. 2021 12 754004 10.3389/fimmu.2021.754004
    [Google Scholar]
  98. Takahashi T. Kobayashi S. Fujino N. Suzuki T. Ota C. He M. Yamada M. Suzuki S. Yanai M. Kurosawa S. Yamaya M. Kubo H. Increased circulating endothelial microparticles in COPD patients: A potential biomarker for COPD exacerbation susceptibility. Thorax 2012 67 12 1067 1074 10.1136/thoraxjnl‑2011‑201395
    [Google Scholar]
  99. Thomashow M.A. Shimbo D. Parikh M.A. Hoffman E.A. Vogel-Claussen J. Hueper K. Fu J. Liu C-Y. Bluemke D.A. Ventetuolo C.E. Doyle M.F. Barr R.G. The Multi-Ethnic Study of Atherosclerosis Chronic Obstructive Pulmonary Disease Study Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The multi-ethnic study of atherosclerosis chronic obstructive pulmonary disease study. Am. J. Respir. Crit. Care Med. 2013 188 1 60 68 10.1164/rccm.201209‑1697OC
    [Google Scholar]
  100. Chapman K.R. Burdon J.G.W. Piitulainen E. Sandhaus R.A. Seersholm N. Stocks J.M. Stoel B.C. Huang L. Yao Z. Edelman J.M. McElvaney N.G. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): A randomised, double-blind, placebo-controlled trial. Lancet 2015 386 9991 360 368 10.1016/S0140‑6736(15)60860‑1
    [Google Scholar]
  101. Silverman E.K. Sandhaus R.A. Alpha1-antitrypsin deficiency. N. Engl. J. Med. 2009 360 26 2749 2757 10.1056/NEJMcp0900449
    [Google Scholar]
  102. Guenegou A. Association of lung function decline with the heme oxygenase-1 gene promoter microsatellite polymorphism in a general population sample. Results from the European Community Respiratory Health Survey (ECRHS). J. Med. Genet. 2006 43 8 e43 e43 10.1136/jmg.2005.039743
    [Google Scholar]
  103. Yamada N. Yamaya M. Okinaga S. Nakayama K. Sekizawa K. Shibahara S. Sasaki H. Microsatellite polymorphism in the heme oxygenase-1 gene promoter is associated with susceptibility to emphysema. Am. J. Hum. Genet. 2000 66 1 187 195 10.1086/302729
    [Google Scholar]
  104. Kong X. Cho M.H. Anderson W. Coxson H.O. Muller N. Washko G. Hoffman E.A. Bakke P. Gulsvik A. Lomas D.A. Silverman E.K. Pillai S.G. Genome-wide association study identifies BICD1 as a susceptibility gene for emphysema. Am. J. Respir. Crit. Care Med. 2011 183 1 43 49 10.1164/rccm.201004‑0541OC
    [Google Scholar]
  105. Wurst K.E. Rheault T.R. Edwards L. Tal-Singer R. Agusti A. Vestbo J. A comparison of COPD patients with and without ACOS in the ECLIPSE study. Eur. Respir. J. 2016 47 5 1559 1562 10.1183/13993003.02045‑2015
    [Google Scholar]
  106. Li D. Wu Y. Guo S. Qin J. Feng M. An Y. Zhang J. Li Y. Xiong S. Zhou H. Zeng Q. Chen L. Wen F. Circulating syndecan-1 as a novel biomarker relates to lung function, systemic inflammation, and exacerbation in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2019 14 1933 1941 10.2147/COPD.S207855
    [Google Scholar]
  107. Mathioudakis A.G. Janssens W. Sivapalan P. Singanayagam A. Dransfield M.T. Jensen J-U.S. Vestbo J. Acute exacerbations of chronic obstructive pulmonary disease: in search of diagnostic biomarkers and treatable traits. Thorax 2020 75 6 520 527 10.1136/thoraxjnl‑2019‑214484
    [Google Scholar]
  108. Noell G. Cosío B.G. Faner R. Monsó E. Peces-Barba G. de Diego A. Esteban C. Gea J. Rodriguez-Roisin R. Garcia-Nuñez M. Pozo-Rodriguez F. Kalko S.G. Agustí A. Multi-level differential network analysis of COPD exacerbations. Eur. Respir. J. 2017 50 3 1700075 10.1183/13993003.00075‑2017
    [Google Scholar]
  109. Zemans R.L. Jacobson S. Keene J. Kechris K. Miller B.E. Tal-Singer R. Bowler R.P. Multiple biomarkers predict disease severity, progression and mortality in COPD. Respir. Res. 2017 18 1 117 10.1186/s12931‑017‑0597‑7
    [Google Scholar]
  110. Celli B.R. Anderson J.A. Brook R. Calverley P. Cowans N.J. Crim C. Dixon I. Kim V. Martinez F.J. Morris A. Newby D.E. Yates J. Vestbo J. Serum biomarkers and outcomes in patients with moderate COPD: A substudy of the randomised SUMMIT trial. BMJ Open Respir. Res. 2019 6 1 e000431 10.1136/bmjresp‑2019‑000431
    [Google Scholar]
  111. Ridker P.M. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: Moving an inflammatory hypothesis toward consensus. J. Am. Coll. Cardiol. 2007 49 21 2129 2138 10.1016/j.jacc.2007.02.052
    [Google Scholar]
  112. Man S F P. C-reactive protein and mortality in mild to moderate chronic obstructive pulmonary disease. Thorax 2006 61 10 849 853 10.1136/thx.2006.059808
    [Google Scholar]
  113. Ellingsen J. Janson C. Bröms K. Hårdstedt M. Högman M. Lisspers K. Palm A. Ställberg B. Malinovschi A. CRP, Fibrinogen, white blood cells, and blood cell indices as prognostic biomarkers of future COPD exacerbation frequency: The TIE cohort study. J. Clin. Med. 2024 13 13 3855 10.3390/jcm13133855
    [Google Scholar]
  114. Barnes P.J. Celli B.R. Systemic manifestations and comorbidities of COPD. Eur. Respir. J. 2009 33 5 1165 1185 10.1183/09031936.00128008
    [Google Scholar]
  115. Perng D.W. Chen P.K. The relationship between airway inflammation and exacerbation in chronic obstructive pulmonary disease. Tuberc. Respir. Dis. (Seoul) 2017 80 4 325 10.4046/trd.2017.0085
    [Google Scholar]
  116. Agustí A.G.N. Noguera A. Sauleda J. Sala E. Pons J. Busquets X. Systemic effects of chronic obstructive pulmonary disease. Eur. Respir. J. 2003 21 2 347 360 10.1183/09031936.03.00405703
    [Google Scholar]
  117. Sapey E. Stockley R.A. COPD exacerbations middle dot 2: Aetiology. Thorax 2006 61 3 250 258 10.1136/thx.2005.041822
    [Google Scholar]
  118. Singh D. Bafadhel M. Brightling C.E. Sciurba F.C. Curtis J.L. Martinez F.J. Pasquale C.B. Merrill D.D. Metzdorf N. Petruzzelli S. Tal-Singer R. Compton C. Rennard S. Martin U.J. Blood eosinophil counts in clinical trials for chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2020 202 5 660 671 10.1164/rccm.201912‑2384PP
    [Google Scholar]
  119. Lenferink A. Citgez E. van der Valk P.D.L.P.M. van der Palen J. Effing T.W. Brusse-Keizer M.G.J. Potential for personalised and biomarker-guided COPD self-treatment approaches. Lancet Respir. Med. 2024 12 8 e48 e49 10.1016/S2213‑2600(24)00180‑2
    [Google Scholar]
  120. Profita M. Effect of cilomilast (Ariflo) on TNF-, IL-8, and GM-CSF release by airway cells of patients with COPD. Thorax 2003 58 7 573 579 10.1136/thorax.58.7.573
    [Google Scholar]
  121. Huang Y. Niu Y. Wang X. Li X. He Y. Liu X. Identification of novel biomarkers related to neutrophilic inflammation in COPD. Front. Immunol. 2024 15 1410158 10.3389/fimmu.2024.1410158
    [Google Scholar]
  122. Takahashi K. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007 131 5 861 872 10.1016/j.cell.2007.11.019
    [Google Scholar]
  123. Glassberg M.K. Csete I. Simonet E. Elliot S.J. Stem cell therapy for COPD: Hope and exploitation. Chest 2021 160 4 1271 1281 10.1016/j.chest.2021.04.020
    [Google Scholar]
  124. Nicola T. Wenger N. Xu X. Evans M. Qiao L. Rezonzew G. Yang Y. Jilling T. Margaroli C. Genschmer K. Willis K. Ambalavanan N. Blalock J.E. Gaggar A. Lal C.V. A lactobacilli-based inhaled live biotherapeutic product attenuates pulmonary neutrophilic inflammation. Nat. Commun. 2024 15 1 7113 10.1038/s41467‑024‑51169‑0
    [Google Scholar]
  125. Tanner L. Single A.B. Animal models reflecting chronic obstructive pulmonary disease and related respiratory disorders: Translating pre-clinical data into clinical relevance. J. Innate Immun. 2020 12 3 203 225 10.1159/000502489
    [Google Scholar]
  126. Ghorani V. Boskabady M.H. Khazdair M.R. Kianmeher M. Experimental animal models for COPD: A methodological review. Tob. Induc. Dis. 2017 15 1 25 10.1186/s12971‑017‑0130‑2
    [Google Scholar]
  127. Fricker M. Deane A. Hansbro P.M. Animal models of chronic obstructive pulmonary disease. Expert Opin. Drug Discov. 2014 9 6 629 645 10.1517/17460441.2014.909805
    [Google Scholar]
  128. Leberl M. Kratzer A. Taraseviciene-Stewart L. Tobacco smoke induced COPD/emphysema in the animal model—are we all on the same page? Front. Physiol. 2013 4 91 10.3389/fphys.2013.00091
    [Google Scholar]
  129. Stevenson C.S. Birrell M.A. Moving towards a new generation of animal models for asthma and COPD with improved clinical relevance. Pharmacol. Ther. 2011 130 2 93 105 10.1016/j.pharmthera.2010.10.008
    [Google Scholar]
  130. Canning B.J. Wright J.L. Animal models of asthma and chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. 2008 21 5 695 695 10.1016/j.pupt.2008.04.007
    [Google Scholar]
  131. Groneberg D.A. Chung K.F. Models of chronic obstructive pulmonary disease. Respir. Res. 2004 5 1 18 10.1186/1465‑9921‑5‑18
    [Google Scholar]
  132. Williams K. Roman J. Studying human respiratory disease in animals – role of induced and naturally occurring models. J. Pathol. 2016 238 2 220 232 10.1002/path.4658
    [Google Scholar]
  133. Baila B. Ohno Y. Nagamoto H. Kotosai K. Yabuuchi Y. Funaguchi N. Ito F. Endo J. Mori H. Takemura G. Fujiwara T. Fujiwara H. Minatoguchi S. Tetomilast attenuates elastase-induced pulmonary emphysema through inhibition of oxidative stress in rabbits. Biol. Pharm. Bull. 2012 35 4 494 502 10.1248/bpb.35.494
    [Google Scholar]
  134. Lucas S.D. Gonçalves L.M. Cardote T.A.F. Correia H.F. Moreira R. Guedes R.C. Structure based virtual screening for discovery of novel human neutrophil elastase inhibitors. MedChemComm 2012 3 10 1299 1304 10.1039/c2md20090b
    [Google Scholar]
  135. Antunes M.A. Rocco P.R.M. Elastase-induced pulmonary emphysema: insights from experimental models. An. Acad. Bras. Cienc. 2011 83 4 1385 1396 10.1590/S0001‑37652011005000039
    [Google Scholar]
  136. de Oliveira M.V. Silva P.L. Rocco P.R.M. Animal models of chronic obstructive pulmonary disease exacerbations: A review of the current status. J. Biomed. Sci. 2016 5 1 8 8
    [Google Scholar]
  137. Brusselle G.G. Bracke K.R. Maes T. D’hulst A.I. Moerloose K.B. Joos G.F. Pauwels R.A. Murine models of COPD. Pulm. Pharmacol. Ther. 2006 19 3 155 165 10.1016/j.pupt.2005.06.001
    [Google Scholar]
  138. Foronjy R.F. Okada Y. Cole R. D’Armiento J. Progressive adult-onset emphysema in transgenic mice expressing human MMP-1 in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2003 284 5 L727 L737 10.1152/ajplung.00349.2002
    [Google Scholar]
  139. Shiomi T. Okada Y. Foronjy R. Schiltz J. Jaenish R. Krane S. D’Armiento J. Emphysematous changes are caused by degradation of type III collagen in transgenic mice expressing MMP-1. Exp. Lung Res. 2003 29 1 1 15 10.1080/01902140303761
    [Google Scholar]
  140. D’Armiento J. Dalal S.S. Okada Y. Berg R.A. Chada K. Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 1992 71 6 955 961 10.1016/0092‑8674(92)90391‑O
    [Google Scholar]
  141. Wang Z. Zheng T. Zhu Z. Homer R.J. Riese R.J. Chapman H.A. Jr Shapiro S.D. Elias J.A. Interferon γ induction of pulmonary emphysema in the adult murine lung. J. Exp. Med. 2000 192 11 1587 1600 10.1084/jem.192.11.1587
    [Google Scholar]
  142. Tazaki G. Kondo T. Tajiri S. Tsuji C. Shioya S Functional residual capacity and airway resistance in rats of COPD model induced by systemic hyaluronidase. Tokai J. Exp. Clin. Med. 2006 31 3 125 127
    [Google Scholar]
  143. Misaka S. Sato H. Yamauchi Y. Onoue S. Yamada S. Novel dry powder formulation of ovalbumin for development of COPD-like animal model: Physicochemical characterization and biomarker profiling in rats. Eur. J. Pharm. Sci. 2009 37 3-4 469 476 10.1016/j.ejps.2009.04.002
    [Google Scholar]
  144. Gupta V. Banyard A. Mullan A. Sriskantharajah S. Southworth T. Singh D. Characterization of the inflammatory response to inhaled lipopolysaccharide in mild to moderate chronic obstructive pulmonary disease. Br. J. Clin. Pharmacol. 2015 79 5 767 776 10.1111/bcp.12546
    [Google Scholar]
  145. Gaschler G.J. Bauer C.M.T. Zavitz C.C.J. Stämpfli M.R. Animal models of chronic obstructive pulmonary disease exacerbations. Contrib. Microbiol. 2007 14 126 141 10.1159/000107059
    [Google Scholar]
  146. Nie Y.C. Wu H. Li P-B. Luo Y-L. Zhang C-C. Shen J-G. Su W-W. Characteristic comparison of three rat models induced by cigarette smoke or combined with LPS: To establish a suitable model for study of airway mucus hypersecretion in chronic obstructive pulmonary disease. Pulm. Pharmacol. Ther. 2012 25 5 349 356 10.1016/j.pupt.2012.06.004
    [Google Scholar]
  147. Donovan C. Seow H.J. Bourke J.E. Vlahos R. Influenza A virus infection and cigarette smoke impair bronchodilator responsiveness to β-adrenoceptor agonists in mouse lung. Clin. Sci. (Lond.) 2016 130 10 829 837 10.1042/CS20160093
    [Google Scholar]
  148. Tan C.L. Chan Y. Candasamy M. Chellian J. Madheswaran T. Sakthivel L.P. Patel V.K. Chakraborty A. MacLoughlin R. Kumar D. Verma N. Malyla V. Gupta P.K. Jha N.K. Thangavelu L. Devkota H.P. Bhatt S. Prasher P. Gupta G. Gulati M. Singh S.K. Paudel K.R. Hansbro P.M. Oliver B.G. Dua K. Chellappan D.K. Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur. J. Pharmacol. 2022 919 174821 10.1016/j.ejphar.2022.174821
    [Google Scholar]
  149. Bucher H. Pre-clinical modeling of viral-and bacterial-induced exacerbations of chronic obstructive pulmonary disease. Universiy of Würzburg 2018
    [Google Scholar]
  150. Mehta M. Dhanjal D.S. Paudel K.R. Singh B. Gupta G. Rajeshkumar S. Thangavelu L. Tambuwala M.M. Bakshi H.A. Chellappan D.K. Pandey P. Dureja H. Charbe N.B. Singh S.K. Shukla S.D. Nammi S. Aljabali A.A. Wich P.R. Hansbro P.M. Satija S. Dua K. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: An update. Inflammopharmacology 2020 28 4 795 817 10.1007/s10787‑020‑00698‑3
    [Google Scholar]
  151. Paul T. Salazar-Degracia A. Peinado V.I. Tura-Ceide O. Blanco I. Barreiro E. Barberà J.A. Soluble guanylate cyclase stimulation reduces oxidative stress in experimental chronic obstructive Pulmonary Disease. PLoS One 2018 13 1 e0190628 10.1371/journal.pone.0190628
    [Google Scholar]
  152. Bölükbas D.A. Iran A.S. Kristina R.T. Preclinical evidence for the role of stem/stromal cells in COPD. Stem Cell-Based Therapy for Lung Disease Springer 1 ed 2019 73 96
    [Google Scholar]
  153. Enright K. Desai T. Sutradhar R. Gonzalez A. Powis M. Taback N. Booth C.M. Trudeau M.E. Krzyzanowska M.K. Factors associated with imaging in patients with early breast cancer after initial treatment. Curr. Oncol. 2018 25 2 126 132 10.3747/co.25.3838
    [Google Scholar]
  154. Jung S. Implications of publicly available genomic data resources in searching for therapeutic targets of obesity and type 2 diabetes. Exp. Mol. Med. 2018 50 4 1 13 10.1038/s12276‑018‑0066‑5
    [Google Scholar]
  155. Husereau D. Goodfield J. Leigh R. Borrelli R. Cloutier M. Gendron A. Severe, eosinophilic asthma in primary care in Canada: a longitudinal study of the clinical burden and economic impact based on linked electronic medical record data. Allergy Asthma Clin. Immunol. 2018 14 1 15 10.1186/s13223‑018‑0241‑1
    [Google Scholar]
  156. Amdahl J. Diaz J. Sharma A. Park J. Chandiwana D. Delea T.E. Cost-effectiveness of pazopanib versus sunitinib for metastatic renal cell carcinoma in the United Kingdom. PLoS One 2017 12 6 e0175920 10.1371/journal.pone.0175920
    [Google Scholar]
  157. Obeidat M. Dvorkin-Gheva A. Li X. Bossé Y. Brandsma C-A. Nickle D.C. Hansbro P.M. Faner R. Agusti A. Paré P.D. Stampfli M.R. Sin D.D. The overlap of lung tissue transcriptome of smoke exposed mice with human smoking and COPD. Sci. Rep. 2018 8 1 11881 10.1038/s41598‑018‑30313‑z
    [Google Scholar]
  158. Wang S. Jiang B. Li Y. Shang Y. Liu Z. Zhang Y. A case report of disseminated nocardiosis with ocular involvement in a myasthenia gravis patient and literature review. BMC Neurol. 2019 19 1 243 10.1186/s12883‑019‑1482‑4
    [Google Scholar]
  159. Collen J.F. Williams S.G. Lettieri C.J. Doomed to repeat history: The burden of trauma-related nightmares in military personnel. J. Clin. Sleep Med. 2018 14 3 303 305 10.5664/jcsm.6964
    [Google Scholar]
  160. Lacoma A. Prat C. Andreo F. Dominguez J. Biomarkers in the management of COPD. Eur. Respir. Rev. 2009 18 112 96 104 10.1183/09059180.00000609
    [Google Scholar]
  161. Ejiofor S. Turner A.M. Pharmacotherapies for COPD. Clin Med Insights Circ Respir Pulm Med 2013 7 17 34
    [Google Scholar]
  162. Tanimura K. Sato S. Fujita Y. Yamamoto Y. Hajiro T. Horita N. Kawayama T. Muro S. The efficacy and safety of additional treatment with short-acting muscarinic antagonist combined with long-acting beta-2 agonist in stable patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. Chron. Respir. Dis. 2023 20 14799731231166008 10.1177/14799731231166008
    [Google Scholar]
  163. Ball D.I. Brittain R.T. Coleman R.A. Denyer L.H. Jack D. Johnson M. Lunts L.H.C. Nials A.T. Sheldrick K.E. Skidmore I.F. Salmeterol, a novel, long-acting β 2 -adrenoceptor agonist: Characterization of pharmacological activity in vitro and in vivo. Br. J. Pharmacol. 1991 104 3 665 671 10.1111/j.1476‑5381.1991.tb12486.x
    [Google Scholar]
  164. Chong J. Karner C. Poole P. Tiotropium versus long-acting beta-agonists for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012 2019 9 CD009157 10.1002/14651858.CD009157.pub2
    [Google Scholar]
  165. Melani A.S. Long-acting muscarinic antagonists. Expert Rev. Clin. Pharmacol. 2015 8 4 479 501 10.1586/17512433.2015.1058154
    [Google Scholar]
  166. Network B.T.S.S.I.G. British guideline on the management of asthma. Thorax 2008 63 Suppl. 4 iv1 iv121 10.1136/thx.2008.097741
    [Google Scholar]
  167. van Noord J.A. Buhl R. LaForce C. Martin C. Jones F. Dolker M. Overend T. QVA149 demonstrates superior bronchodilation compared with indacaterol or placebo in patients with chronic obstructive pulmonary disease. Thorax 2010 65 12 1086 1091 10.1136/thx.2010.139113
    [Google Scholar]
  168. Cooper C.B. Airflow obstruction and exercise. Respir. Med. 2009 103 3 325 334 10.1016/j.rmed.2008.10.026
    [Google Scholar]
  169. Beeh K.M. Wagner F. Khindri S. Drollmann A.F. Effect of indacaterol on dynamic lung hyperinflation and breathlessness in hyperinflated patients with COPD. COPD 2011 8 5 340 345 10.3109/15412555.2011.594464
    [Google Scholar]
  170. Donaldson G.C. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002 57 10 847 852 10.1136/thorax.57.10.847
    [Google Scholar]
  171. Rovei V. Chanoine F. Benedetti S.M. Pharmacokinetics of theophylline: a dose-range study. Br. J. Clin. Pharmacol. 1982 14 6 769 778 10.1111/j.1365‑2125.1982.tb02035.x
    [Google Scholar]
  172. Hanania N.A. Sharafkhaneh A. Barber R. Dickey B.F. β-agonist intrinsic efficacy: Measurement and clinical significance. Am. J. Respir. Crit. Care Med. 2002 165 10 1353 1358 10.1164/rccm.2109060
    [Google Scholar]
  173. Fazio F. Lafortuna C. Effect of inhaled salbutamol on mucociliary clearance in patients with chronic bronchitis. Chest 1981 80 6 Suppl. 827 830 10.1378/chest.80.6.827
    [Google Scholar]
  174. Maris N.A. van der Sluijs K.F. Florquin S. de Vos A.F. Pater J.M. Jansen H.M. van der Poll T. Salmeterol, a β 2 -receptor agonist, attenuates lipopolysaccharide-induced lung inflammation in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004 286 6 L1122 L1128 10.1152/ajplung.00125.2003
    [Google Scholar]
  175. Tomlinson P.R. Wilson J.W. Stewart A.G. Inhibition by salbutamol of the proliferation of human airway smooth muscle cells grown in culture. Br. J. Pharmacol. 1994 111 2 641 647 10.1111/j.1476‑5381.1994.tb14784.x
    [Google Scholar]
  176. Lipson D.A. Tiotropium bromide. Int. J. Chron. Obstruct. Pulmon. Dis. 2006 1 2 107 114 10.2147/copd.2006.1.2.107
    [Google Scholar]
  177. Orlova E.A. Petrov V.I. Dorfman I.P. Shatalova O.V. Orlov M.A. Analysis of the availability of bronchodilators and anti-inflammatory drugs for patients with chronic obstructive pulmonary disease. Modern. Pharmacoeconomic. and Pharmacoepidemiol. 2024 17 1 62 75 10.17749/2070‑4909/farmakoekonomika.2024.232
    [Google Scholar]
  178. Li X. Zheng J. Luo D. Liu R. The optimal dose of indacaterol for treatment of chronic obstructive pulmonary disease: A systematic review and Bayesian network meta-analysis. J. Thorac. Dis. 2024 16 1 344 355 10.21037/jtd‑23‑1044
    [Google Scholar]
  179. Fernandes F.L.A. Cukier A. Camelier A.A. Fritscher C.C. Costa C.H. Pereira E.D.B. Godoy I. Cançado J.E.D. Romaldini J.G. Chatkin J.M. Jardim J.R. Rabahi M.F. Nucci M.C.N.M. Sales M.P.U. Castellano M.V.C.O. Aidé M.A. Teixeira P.J.Z. Maciel R. Corrêa R.A. Stirbulov R. Athanazio R.A. Russo R. Minamoto S.T. Lundgren F.L.C. Recommendations for the pharmacological treatment of COPD: Questions and answers. J. Bras. Pneumol. 2017 43 4 290 301 10.1590/s1806‑37562017000000153
    [Google Scholar]
  180. Chen C. Wu L.B. Wang L.J. Tang X.H. Probiotics combined with Budesonide and Ipratropium bromide for chronic obstructive pulmonary disease: A retrospective analysis. Medicine (Baltimore) 2024 103 10 e37309 10.1097/MD.0000000000037309
    [Google Scholar]
  181. Foster K. Wong C.Y.J. Advances in inhaler therapy for asthma and chronic obstructive pulmonary disease: A comprehensive review of Fostair™ and Trimbow™. J. Pharm. Pharmacol. 2024 76 10 1301 1309 10.1093/jpp/rgae090
    [Google Scholar]
  182. Garbe E. Long-term safety of roflumilast in patients with chronic obstructive pulmonary disease, a multinational observational database cohort study. Int. J. Chron. Obstruct. Pulmon. Dis. 2024 1879 1892
    [Google Scholar]
  183. Gyselinck I. Janssens W. Macrolide use in chronic obstructive pulmonary disease Macrolides as Immunomodulatory Agents Springer 2024 115 148 10.1007/978‑3‑031‑42859‑3_6
    [Google Scholar]
  184. Papi A. Alfano F. Bigoni T. Mancini L. Mawass A. Baraldi F. Aljama C. Contoli M. Miravitlles M. N-acetylcysteine treatment in chronic obstructive pulmonary disease (COPD) and chronic bronchitis/Pre-COPD: Distinct meta-analyses. Arch. Bronconeumol. 2024 60 5 269 278 10.1016/j.arbres.2024.03.010
    [Google Scholar]
  185. Varsakiya J. Goyal M. Chronic Obstructive Pulmonary Disease (COPD): Critical review from Ayurveda perspective. J. Ayurveda. Herb. Med 2017 3 2 92 94 10.31254/jahm.2017.3208
    [Google Scholar]
  186. Çifci A. Ginger (Zingiber officinale) prevents severe damage to the lungs due to hyperoxia andinflammation. Turk. J. Med. Sci. 2018 48 4 892 900
    [Google Scholar]
  187. McKay D.L. Blumberg J.B. A review of the bioactivity and potential health benefits of peppermint tea ( Mentha piperita L.). Phytother. Res. 2006 20 8 619 633 10.1002/ptr.1936
    [Google Scholar]
  188. Scaglione F. Weiser K. Alessandria M. Effects of the standardised ginseng extract G115® in patients with chronic bronchitis: A nonblinded, randomised, comparative pilot study. Clin. Drug Investig. 2001 21 1 41 45 10.2165/00044011‑200121010‑00006
    [Google Scholar]
  189. Bharti V.K. Malik J.K. Gupta R.C. Ashwagandha: Multiple health benefits Nutraceuticals Elsevier 2016 717 733
    [Google Scholar]
  190. Singh N. Bhalla M. De Jager P. Gilca M. An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. Afr. J. Tradit. Complement. Altern. Med. 2011 8 5S 10.4314/ajtcam.v8i5S.9
    [Google Scholar]
  191. Mandal A. Reddy J.M. A review on potential therapeutic uses of Withania somnifera. World J. Pharm. Res. 2017 6 846 860 10.20959/wjpr20177‑8882
    [Google Scholar]
  192. Singh N.A. Kumar P. Jyoti Kumar N. Spices and herbs: Potential antiviral preventives and immunity boosters during COVID -19. Phytother. Res. 2021 35 5 2745 2757 10.1002/ptr.7019
    [Google Scholar]
  193. Mikaili P. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran. J. Basic Med. Sci. 2013 16 10 1031
    [Google Scholar]
  194. Haller C.A. Anderson I.B. Kim S.Y. Blanc P.D. An evaluation of selected herbal reference texts and comparison to published reports of adverse herbal events. Adverse Drug React. Toxicol. Rev. 2002 21 3 143 150 10.1007/BF03256189
    [Google Scholar]
  195. Kayode O.T. Rotimi D. Emmanuel F. Iyobhebhe M. Kayode A.A.A. Adeleke Ojo O. Contraceptive and biochemical effect of juice extract of Allium cepa, Allium sativum, and their combination in Canton S fruit flies. J. Food Biochem. 2021 45 8 e13821 10.1111/jfbc.13821
    [Google Scholar]
  196. Islam M.N. Yadav R.L. Yadav P.K. Modulation of lung function by increased nitric oxide production. J. Clin. Diagn. Res. 2017 11 6 CC09 10.7860/JCDR/2017/24650.9981
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X334447241104114932
Loading
/content/journals/crmr/10.2174/011573398X334447241104114932
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: smoking ; respiratory disease ; airway inflammation ; COPD ; chronic bronchitis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test