Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-398X
  • E-ISSN: 1875-6387

Abstract

Background

Spirulina algae are widely used in food, cosmetic, and dietary applications, and laboratory and clinical studies have reported their antiviral and immune-enhancing properties.

Aim

We aimed to evaluate the prescription of spirulina, a safe food supplement with antiviral properties, and N-acetylcysteine in the treatment of hospitalized patients with Coronavirus Disease 2019 (COVID-19).

Materials and Methods

This study was conducted as a multicenter, randomized, single-masked, open-label phase II clinical trial on 66 patients with COVID-19. Patients were randomly assigned to two intervention groups and one control group. The intervention groups were defined as follows: one group received spirulina algae (23 people), and the other group received N-acetylcysteine plus spirulina algae (21 people). In the control group (22 people), the patients only received the national standard treatment for COVID-19. The intervention groups were prescribed 80 mg/kg of spirulina green algae daily.

Results

The duration of hospitalization ( = 0.874), Intensive Care Unit (ICU) admission ( = 0.320), and mortality ( = 0.320) of patients between the three groups did not show any significant difference. Side effects, including headache ( = 0.022) and nausea ( = 0.039), were significantly less common in the control group. No statistically significant difference was observed regarding the frequency of symptoms after discharge in the three-month follow-up ( = 0.420).

Conclusion

Our study showed that administering spirulina with or without N-acetylcysteine did not affect the length of hospitalization, ICU admission, mortality, and the frequency of symptoms or long COVID.

Clinical Trial Registration Number

IRCT20220509054793N1.

Loading

Article metrics loading...

/content/journals/crmr/10.2174/011573398X304275240626050005
2024-07-08
2025-01-22
Loading full text...

Full text loading...

References

  1. ArsenaultC. GageA. KimM.K. KapoorN.R. AkweongoP. AmponsahF. AryalA. AsaiD. Awoonor-WilliamsJ.K. AyeleW. BedregalP. DoubovaS.V. DulalM. GadekaD.D. Gordon-StrachanG. MariamD.H. HensmanD. JosephJ.P. KaewkamjornchaiP. EshetuM.K. GelawS.K. KubotaS. LeerapanB. MargozziniP. MebratieA.D. MehataS. MoshabelaM. MthethwaL. NegaA. OhJ. ParkS. Passi-SolarÁ. Pérez-CuevasR. PhengsavanhA. ReddyT. RittiphairojT. SapagJ.C. ThermidorR. TlouB. Valenzuela GuiñezF. BauhoffS. KrukM.E. COVID-19 and resilience of healthcare systems in ten countries.Nat. Med.20222861314132410.1038/s41591‑022‑01750‑135288697
    [Google Scholar]
  2. LeeY.E. KimH. SeoC. ParkT. LeeK.B. YooS.Y. HongS.C. KimJ.T. LeeJ. Marine polysaccharides: Therapeutic efficacy and biomedical applications.Arch. Pharm. Res.20174091006102010.1007/s12272‑017‑0958‑228918561
    [Google Scholar]
  3. ShiQ. WangA. LuZ. QinC. HuJ. YinJ. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds.Carbohydr. Res.2017453-4541910.1016/j.carres.2017.10.02029102716
    [Google Scholar]
  4. WangW. WangS.X. GuanH.S. The antiviral activities and mechanisms of marine polysaccharides: An overview.Mar. Drugs201210122795281610.3390/md1012279523235364
    [Google Scholar]
  5. BesednovaN. ZaporozhetsT. KuznetsovaT. MakarenkovaI. FedyaninaL. KryzhanovskyS. MalyarenkoO. ErmakovaS. Metabolites of seaweeds as potential agents for the prevention and therapy of influenza infection.Mar. Drugs201917637310.3390/md1706037331234532
    [Google Scholar]
  6. GeilerJ. MichaelisM. NaczkP. LeutzA. LangerK. DoerrH.W. CinatlJ.Jr N-acetyl-l-cysteine (NAC) inhibits virus replication and expression of pro-inflammatory molecules in A549 cells infected with highly pathogenic H5N1 influenza A virus.Biochem. Pharmacol.201079341342010.1016/j.bcp.2009.08.02519732754
    [Google Scholar]
  7. WongK.K. LeeS.W.H. KuaK.P. N-acetylcysteine as adjuvant therapy for COVID-19–A perspective on the current state of the evidence.J. Inflamm. Res.2021142993301310.2147/JIR.S30684934262324
    [Google Scholar]
  8. ShiZ. PuyoC.A. N-acetylcysteine to combat COVID-19: An evidence review.Ther. Clin. Risk Manag.2020161047105510.2147/TCRM.S27370033177829
    [Google Scholar]
  9. De FloraS. BalanskyR. La MaestraS. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19.FASEB J.20203410131851319310.1096/fj.20200180732780893
    [Google Scholar]
  10. Jorge-AarónR-M. Rosa-EsterM-P. N-acetylcysteine as a potential treatment for COVID-19.Future Microbiol2020959962
    [Google Scholar]
  11. RajT.K. RanjithkumarR. KantheshB. GopenathT. C-Phycocyanin of Spirulina platensis inhibits NSP12 required for replication of SARS-COV-2: A novel finding in silico.Int. J. Pharm. Sci. Res.2020119271278
    [Google Scholar]
  12. Hernández LepeM.A. Wall-MedranoA. Juárez-OropezaM.A. Ramos-JiménezA. Hernández-TorresR.P. Spirulina and its hypolipidemic and antioxidant effects in humans: A systematic review.Nutr. Hosp.201532249450026268076
    [Google Scholar]
  13. SerbanM.C. SahebkarA. DraganS. Stoichescu-HogeaG. UrsoniuS. AndricaF. BanachM. A systematic review and meta-analysis of the impact of spirulina supplementation on plasma lipid concentrations.Clin. Nutr.201635484285110.1016/j.clnu.2015.09.00726433766
    [Google Scholar]
  14. MachowiecP. RękaG. MaksymowiczM. Piecewicz-SzczęsnaH. SmoleńA. Effect of spirulina supplementation on systolic and diastolic blood pressure: Systematic review and meta-analysis of randomized controlled trials.Nutrients2021139305410.3390/nu1309305434578932
    [Google Scholar]
  15. ManiU.V. IyerU.M. DhruvS.A. ManiI.U. SharmaK.S. Therapeutic utility of spirulina.Spirulina in Human Nutrition and Health. GershwinM.E. BelayA. Boca Raton, FloridaCRC Press2007
    [Google Scholar]
  16. de FloraS. GrassiC. CaratiL. Attenuation of influenza-like symptomatology and improvement of cell-mediated immunity with long-term N-acetylcysteine treatment.Eur. Respir. J.19971071535154110.1183/09031936.97.100715359230243
    [Google Scholar]
  17. ShahW HillmanT PlayfordED HishmehL Managing the long term effects of COVID-19: Summary of NICE, SIGN, and RCGP rapid guideline.BMJ20212021372
    [Google Scholar]
  18. MarlesR.J. BarrettM.L. BarnesJ. ChavezM.L. GardinerP. KoR. MahadyG.B. DogT.L. SarmaN.D. GiancasproG.I. SharafM. GriffithsJ. United States pharmacopeia safety evaluation of spirulina.Crit. Rev. Food Sci. Nutr.201151759360410.1080/1040839100372171921793723
    [Google Scholar]
  19. BăicuşC. TănăsescuC. Chronic viral hepatitis, the treatment with spiruline for one month has no effect on the aminotransferases.Rom. J. Intern. Med.2002401-4899415526544
    [Google Scholar]
  20. WhiteheadA.L. JuliousS.A. CooperC.L. CampbellM.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable.Stat. Methods Med. Res.20162531057107310.1177/096228021558824126092476
    [Google Scholar]
  21. RathaS.K. RenukaN. RawatI. BuxF. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases.Nutrition20218311108910.1016/j.nut.2020.11108933412367
    [Google Scholar]
  22. ChiaW.Y. KokH. ChewK.W. LowS.S. ShowP.L. Can algae contribute to the war with COVID-19?Bioengineered20211211226123710.1080/21655979.2021.191043233858291
    [Google Scholar]
  23. HwangJ. YadavD. LeeP.C.W. JinJ.O. Immunomodulatory effects of polysaccharides from marine algae for treating cancer, infectious disease, and inflammation.Phytother. Res.202236276177710.1002/ptr.734834962325
    [Google Scholar]
  24. SiedenburgJ.R. CauchiJ.P. Spirulina (Arthrospira spp) as a complementary COVID-19 response option: Early evidence of promise.Curr. Res. Nutr. Food Sci.202210112914410.12944/CRNFSJ.10.1.10
    [Google Scholar]
  25. HuB. HuangS. YinL. The cytokine storm and COVID-19.J. Med. Virol.202193125025610.1002/jmv.2623232592501
    [Google Scholar]
  26. MohitiS. ZarezadehM. NaeiniF. TutunchiH. OstadrahimiA. GhoreishiZ. Ebrahimi MamaghaniM. Spirulina supplementation and oxidative stress and pro-inflammatory biomarkers: A systematic review and meta-analysis of controlled clinical trials.Clin. Exp. Pharmacol. Physiol.20214881059106910.1111/1440‑1681.1351033908048
    [Google Scholar]
  27. FerreiraA.O. PoloniniH.C. DijkersE.C.F. Postulated adjuvant therapeutic strategies for COVID-19.J. Pers. Med.20201038010.3390/jpm1003008032764275
    [Google Scholar]
  28. FinamoreA PalmeryM BensehailaS PelusoI Antioxidant, immunomodulating, and microbial-modulating activities of the sustainable and ecofriendly spirulina.Oxid Med Cell Longev201720173247528
    [Google Scholar]
  29. TzachorA. RozenO. KhatibS. JensenS. AvniD. Photosynthetically controlled spirulina, but not solar spirulina, inhibits TNF-α secretion: Potential implications for COVID-19-related cytokine storm therapy.Mar. Biotechnol.202123114915510.1007/s10126‑021‑10020‑z33566210
    [Google Scholar]
  30. Ngo-MatipM.E. PiemeC.A. Azabji-KenfackM. MouketteB.M. KoroskyE. StefaniniP. NgogangJ.Y. MbofungC.M. Impact of daily supplementation of spirulina platensis on the immune system of naïve HIV-1 patients in Cameroon: A 12-months single blind, randomized, multicenter trial.Nutr. J.20151417010.1186/s12937‑015‑0058‑426195001
    [Google Scholar]
  31. ChenY.H. ChangG.K. KuoS.M. HuangS.Y. HuI.C. LoY.L. ShihS.R. Well-tolerated spirulina extract inhibits influenza virus replication and reduces virus-induced mortality.Sci. Rep.2016612425310.1038/srep2425327067133
    [Google Scholar]
  32. WinterF. EmakamF. KfutwahA. HermannJ. Azabji-KenfackM. KrawinkelM. The effect of Arthrospira platensis capsules on CD4 T-cells and antioxidative capacity in a randomized pilot study of adult women infected with human immunodeficiency virus not under HAART in Yaoundé, Cameroon.Nutrients2014672973298610.3390/nu607297325057105
    [Google Scholar]
  33. MazokopakisE.E. PapadomanolakiM.G. The contribution of spirulina platensis supplementation on COVID-19 prevention and hospitalization.Europ. J. Med. Heal. Sci.202243828310.24018/ejmed.2022.4.3.1355
    [Google Scholar]
  34. HatamiM. Mojani-QomiM.S. JavidZ. TaghaviM. BakhshandehH. Sanaei Delir ZavaraghD. MikanikiF. NazariM. SeyedmehdiS.A. RahmaniJ. NorouziM. ShadnoushM. Possible ameliorative role of Spirulina platensis on coagulation factors, lymphocytopenia, and malnutrition in ICU patients with COVID-19.Appl. Physiol. Nutr. Metab.2023481179980710.1139/apnm‑2022‑040537429042
    [Google Scholar]
  35. LeeA.N. WerthV.P. Activation of autoimmunity following use of immunostimulatory herbal supplements.Arch. Dermatol.2004140672372710.1001/archderm.140.6.72315210464
    [Google Scholar]
  36. JiangY. XieP. ChenJ. LiangG. Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria spirulina food products in China.Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess.200825788589410.1080/0265203070182204518569007
    [Google Scholar]
/content/journals/crmr/10.2174/011573398X304275240626050005
Loading
/content/journals/crmr/10.2174/011573398X304275240626050005
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Algae; antioxidants; COVID-19; inflammation; N-acetyl cysteine; spirulina
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test