Skip to content
2000
image of Neuroinflammation in the Genesis of Epilepsy

Abstract

Epilepsy is the second most typical chronic disorder, described by recurrent seizures and uncontrolled electrical signaling from neurons in the cerebral cortex. Stimulated astrocytes, along with microglia, promote cytokines that cause neuroinflammation, leading to a chain reaction of subsequent steps involving neurons as well as endothelial cells along the blood-brain barrier. Inflammation in the brain’s neural network can cause convulsions and epilepsy. The migration of albumin proteins and the infiltration of peripheral immune cells from the serum into the brain disrupt BBB, which, in turn, activates astrocytes and microglia, which stimulate pro-inflammatory mediators like cytokines, chemokines, and other inflammatory mediators. They increase the glutamate level and cause an influx of calcium ions, leading to the production of less GABA and a decrease in the influx of chloride ions. These events exacerbate the inflammatory process that leads to neuronal excitability and contribute further to the development of epilepsy. In this review, we discuss how astrocytes, microglia, and neurons stimulate cytokines, chemokines, and other inflammatory mediators that play an essential role in the development of epilepsy. This review also explore how the permeability of the blood-brain barrier promotes neuroinflammation and contributes to epileptogenesis. The purpose of this review is to present knowledge on neuroinflammation so that new antiepileptic drugs can be developed to prevent this disorder.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560347296250211081124
2025-02-14
2025-03-13
Loading full text...

Full text loading...

References

  1. Scharfman H. The dentate gyrus and temporal lobe epilepsy: An "exciting" era. Epilepsy Curr. 2019 19 4 249 255
    [Google Scholar]
  2. Epilepsy. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy
  3. Yamanaka G. Morichi S. Takamatsu T. Watanabe Y. Suzuki S. Ishida Y. Oana S. Yamazaki T. Takata F. Kawashima H. Links between immune cells from the periphery and the brain in the pathogenesis of epilepsy: A narrative review. Int. J. Mol. Sci. 2021 22 9 4395 10.3390/ijms22094395 33922369
    [Google Scholar]
  4. Beghi E. The Epidemiology of Epilepsy. Neuroepidemiology 2020 54 2 185 191 10.1159/000503831 31852003
    [Google Scholar]
  5. Vezzani A. French J. Bartfai T. Baram T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol. 2011 7 1 31 40 10.1038/nrneurol.2010.178 21135885
    [Google Scholar]
  6. Fabene P.F. Mora G.N. Martinello M. Rossi B. Merigo F. Ottoboni L. Bach S. Angiari S. Benati D. Chakir A. Zanetti L. Schio F. Osculati A. Marzola P. Nicolato E. Homeister J.W. Xia L. Lowe J.B. McEver R.P. Osculati F. Sbarbati A. Butcher E.C. Constantin G. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat. Med. 2008 14 12 1377 1383 10.1038/nm.1878 19029985
    [Google Scholar]
  7. Sanz P. Rubio T. Garcia-Gimeno M.A. Neuroinflammation and epilepsy: From pathophysiology to therapies based on repurposing drugs. Int. J. Mol. Sci. 2024 25 8 4161 10.3390/ijms25084161 38673747
    [Google Scholar]
  8. Wolinski P. Ksiazek-Winiarek D. Glabinski A. Cytokines and Neurodegeneration in Epileptogenesis. Brain Sci. 2022 12 3 380 10.3390/brainsci12030380 35326336
    [Google Scholar]
  9. Peek S.I. Twele F. Meller S. Packer R.M.A. Volk H.A. Epilepsy is more than a simple seizure disorder: Causal relationships between epilepsy and its comorbidities. Vet. J. 2024 303 106061 10.1016/j.tvjl.2023.106061 38123062
    [Google Scholar]
  10. Mukhtar I. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target. Seizure 2020 82 65 79 10.1016/j.seizure.2020.09.015 33011590
    [Google Scholar]
  11. Temkin N.R. Preventing and treating posttraumatic seizures: The human experience. Epilepsia 2009 50 s2 Suppl. 2 10 13 10.1111/j.1528‑1167.2008.02005.x 19187289
    [Google Scholar]
  12. Strauss K.I. Elisevich K.V. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J. Neuroinflammation 2016 13 1 270 10.1186/s12974‑016‑0727‑z 27737716
    [Google Scholar]
  13. Mukherjee S. Arisi G.M. Mims K. Hollingsworth G. O’Neil K. Shapiro L.A. Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflammation 2020 17 1 193 10.1186/s12974‑020‑01854‑w 32552898
    [Google Scholar]
  14. Chen J. Ye H. Zhang J. Li A. Ni Y. Pathogenesis of seizures and epilepsy after stroke. Acta Epileptol. 2022 4 1 2 10.1186/s42494‑021‑00068‑8
    [Google Scholar]
  15. Kang D.H. Heo R.W. Yi C. Kim H. Choi C.H. Roh G.S. High-fat diet-induced obesity exacerbates kainic acid-induced hippocampal cell death. BMC Neurosci. 2015 16 1 72 10.1186/s12868‑015‑0202‑2 26518260
    [Google Scholar]
  16. Rana A. Musto A.E. The role of inflammation in the development of epilepsy. J. Neuroinflammation 2018 15 1 144 10.1186/s12974‑018‑1192‑7 29764485
    [Google Scholar]
  17. Musto A.E. Rosencrans R.F. Walker C.P. Bhattacharjee S. Raulji C.M. Belayev L. Fang Z. Gordon W.C. Bazan N.G. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism. Sci. Rep. 2016 6 1 30298 10.1038/srep30298 27444269
    [Google Scholar]
  18. Hauser W.A. Beghi E. First seizure definitions and worldwide incidence and mortality. Epilepsia 2008 49 s1 Suppl. 1 8 12 10.1111/j.1528‑1167.2008.01443.x 18184148
    [Google Scholar]
  19. Fiest K.M. Sauro K.M. Wiebe S. Patten S.B. Kwon C.S. Dykeman J. Pringsheim T. Lorenzetti D.L. Jetté N. Prevalence and incidence of epilepsy. Neurology 2017 88 3 296 303 10.1212/WNL.0000000000003509 27986877
    [Google Scholar]
  20. Beghi E. Giussani G. Aging and the Epidemiology of Epilepsy. Neuroepidemiology 2018 51 3-4 216 223 10.1159/000493484 30253417
    [Google Scholar]
  21. Trinka E. Kwan P. Lee B. Dash A. Epilepsy in Asia: Disease burden, management barriers, and challenges. Epilepsia 2019 60 S1 Suppl. 1 7 21 10.1111/epi.14458 29953579
    [Google Scholar]
  22. Niriayo Y.L. Mamo A. Gidey K. Demoz G.T. Medication Belief and Adherence among Patients with Epilepsy. Behav. Neurol. 2019 2019 1 7 10.1155/2019/2806341 31178940
    [Google Scholar]
  23. Robel S. Astroglial Scarring and Seizures. Neuroscientist 2017 23 2 152 168 10.1177/1073858416645498 27118807
    [Google Scholar]
  24. Devinsky O. Vezzani A. Najjar S. De Lanerolle N.C. Rogawski M.A. Glia and epilepsy: Excitability and inflammation. Trends Neurosci. 2013 36 3 174 184 10.1016/j.tins.2012.11.008 23298414
    [Google Scholar]
  25. David Y. Cacheaux L.P. Ivens S. Lapilover E. Heinemann U. Kaufer D. Friedman A. Astrocytic dysfunction in epileptogenesis: Consequence of altered potassium and glutamate homeostasis? J. Neurosci. 2009 29 34 10588 10599 10.1523/JNEUROSCI.2323‑09.2009 19710312
    [Google Scholar]
  26. Yang F. Wang J.C. Han J.L. Zhao G. Jiang W. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats. Hippocampus 2008 18 5 460 468 10.1002/hipo.20409 18240317
    [Google Scholar]
  27. Vezzani A. Friedman A. Brain inflammation as a biomarker in epilepsy. Biomarkers Med. 2011 5 5 607 614 10.2217/bmm.11.61 22003909
    [Google Scholar]
  28. Vezzani A. Aronica E. Mazarati A. Pittman Q.J. Epilepsy and brain inflammation. Exp. Neurol. 2013 244 11 21 10.1016/j.expneurol.2011.09.033 21985866
    [Google Scholar]
  29. Köhling R. Wolfart J. Potassium Channels in Epilepsy. Cold Spring Harb. Perspect. Med. 2016 6 5 a022871 10.1101/cshperspect.a022871 27141079
    [Google Scholar]
  30. Ginhoux F. Lim S. Hoeffel G. Low D. Huber T. Origin and differentiation of microglia. Front. Cell. Neurosci. 2013 7 45 10.3389/fncel.2013.00045 23616747
    [Google Scholar]
  31. Feng L. Murugan M. Bosco D.B. Liu Y. Peng J. Worrell G.A. Wang H.L. Ta L.E. Richardson J.R. Shen Y. Wu L.J. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia 2019 67 8 1434 1448 10.1002/glia.23616 31179602
    [Google Scholar]
  32. Zhao X. Liao Y. Morgan S. Mathur R. Feustel P. Mazurkiewicz J. Qian J. Chang J. Mathern G.W. Adamo M.A. Ritaccio A.L. Gruenthal M. Zhu X. Huang Y. Noninflammatory changes of microglia are sufficient to cause Epilepsy. Cell Rep. 2018 22 8 2080 2093 10.1016/j.celrep.2018.02.004 29466735
    [Google Scholar]
  33. Zeng C. Hu J. Chen F. Huang T. Zhang L. The coordination of mtor signaling and non-coding RNA in regulating epileptic neuroinflammation. Front. Immunol. 2022 13 924642 10.3389/fimmu.2022.924642 35898503
    [Google Scholar]
  34. Araki T. Ikegaya Y. Koyama R. The effects of microglia‐ and astrocyte‐derived factors on neurogenesis in health and disease. Eur. J. Neurosci. 2021 54 5 5880 5901 10.1111/ejn.14969 32920880
    [Google Scholar]
  35. Lee D.J. Hsu M.S. Seldin M.M. Arellano J.L. Binder D.K. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Exp. Neurol. 2012 235 1 246 255 10.1016/j.expneurol.2012.02.002 22361023
    [Google Scholar]
  36. de Groot M. Iyer A. Zurolo E. Anink J. Heimans J.J. Boison D. Reijneveld J.C. Aronica E. Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor‐associated epilepsy. Epilepsia 2012 53 1 58 66 10.1111/j.1528‑1167.2011.03306.x 22092111
    [Google Scholar]
  37. Jiang X. Andjelkovic A.V. Zhu L. Yang T. Bennett M.V.L. Chen J. Keep R.F. Shi Y. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog. Neurobiol. 2018 163-164 144 171 10.1016/j.pneurobio.2017.10.001 28987927
    [Google Scholar]
  38. Dharmasaroja P.A. Fluid intake related to brain edema in acute middle cerebral artery infarction. Transl. Stroke Res. 2016 7 1 49 53 10.1007/s12975‑015‑0439‑1 26666449
    [Google Scholar]
  39. van Vliet E.A. Aronica E. Gorter J.A. Blood–brain barrier dysfunction, seizures and epilepsy. Semin. Cell Dev. Biol. 2015 38 26 34 10.1016/j.semcdb.2014.10.003 25444846
    [Google Scholar]
  40. Oby E. Janigro D. The blood-brain barrier and epilepsy. Epilepsia 2006 47 11 1761 1774 10.1111/j.1528‑1167.2006.00817.x 17116015
    [Google Scholar]
  41. Varvel N.H. Neher J.J. Bosch A. Wang W. Ransohoff R.M. Miller R.J. Dingledine R. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proc. Natl. Acad. Sci. USA 2016 113 38 E5665 E5674 10.1073/pnas.1604263113 27601660
    [Google Scholar]
  42. de Vries E.E. van den Munckhof B. Braun K.P.J. van Royen-Kerkhof A. de Jager W. Jansen F.E. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2016 63 177 190 10.1016/j.neubiorev.2016.02.007 26877106
    [Google Scholar]
  43. Li W. Wu J. Zeng Y. Zheng W. Neuroinflammation in epileptogenesis: From pathophysiology to therapeutic strategies. Front. Immunol. 2023 14 1269241 10.3389/fimmu.2023.1269241 38187384
    [Google Scholar]
  44. Ravizza T. Gagliardi B. Noé F. Boer K. Aronica E. Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol. Dis. 2008 29 1 142 160 10.1016/j.nbd.2007.08.012 17931873
    [Google Scholar]
  45. Vezzani A. Balosso S. Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav. Immun. 2008 22 6 797 803 10.1016/j.bbi.2008.03.009 18495419
    [Google Scholar]
  46. Vezzani A. Baram T.Z. New roles for interleukin-1 Beta in the mechanisms of epilepsy. Epilepsy Curr. 2007 7 2 45 50 10.1111/j.1535‑7511.2007.00165.x 17505552
    [Google Scholar]
  47. Chen Y. Nagib M.M. Yasmen N. Sluter M.N. Littlejohn T.L. Yu Y. Jiang J. Neuroinflammatory mediators in acquired epilepsy: An update. Inflamm. Res. 2023 72 4 683 701 10.1007/s00011‑023‑01700‑8 36745211
    [Google Scholar]
  48. Vezzani A. Moneta D. Richichi C. Aliprandi M. Burrows S.J. Ravizza T. Perego C. De Simoni M.G. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 2002 43 s5 Suppl. 5 30 35 10.1046/j.1528‑1157.43.s.5.14.x 12121291
    [Google Scholar]
  49. Alyu F. Dikmen M. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr. 2017 29 1 1 16 10.1017/neu.2016.47 27692004
    [Google Scholar]
  50. Viviani B. Bartesaghi S. Gardoni F. Vezzani A. Behrens M.M. Bartfai T. Binaglia M. Corsini E. Di Luca M. Galli C.L. Marinovich M. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J. Neurosci. 2003 23 25 8692 8700 10.1523/JNEUROSCI.23‑25‑08692.2003 14507968
    [Google Scholar]
  51. Roseti C. van Vliet E.A. Cifelli P. Ruffolo G. Baayen J.C. Di Castro M.A. Bertollini C. Limatola C. Aronica E. Vezzani A. Palma E. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis. Neurobiol. Dis. 2015 82 311 320 10.1016/j.nbd.2015.07.003 26168875
    [Google Scholar]
  52. Han T. Qin Y. Mou C. Wang M. Jiang M. Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am. J. Transl. Res. 2016 8 10 4499 4509 27830035
    [Google Scholar]
  53. Shi L. Chen R. Zhang H. Jiang C. Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv. Syst. 2017 33 5 805 811 10.1007/s00381‑017‑3359‑4 28236069
    [Google Scholar]
  54. Samuelsson A.M. Jennische E. Hansson H.A. Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA A dysregulation and impaired spatial learning. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006 290 5 R1345 R1356 10.1152/ajpregu.00268.2005 16357100
    [Google Scholar]
  55. Erta M. Quintana A. Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci. 2012 8 9 1254 1266 10.7150/ijbs.4679 23136554
    [Google Scholar]
  56. Kalueff A.V. Lehtimaki K.A. Ylinen A. Honkaniemi J. Peltola J. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci. Lett. 2004 365 2 106 110 10.1016/j.neulet.2004.04.061 15245788
    [Google Scholar]
  57. De Sarro G. Russo E. Ferreri G. Giuseppe B. Flocco M.A. Di Paola E.D. De Sarro A. Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice. Pharmacol. Biochem. Behav. 2004 77 4 761 766 10.1016/j.pbb.2004.01.012 15099921
    [Google Scholar]
  58. Zaretsky M.V. Alexander J.M. Byrd W. Bawdon R.E. Transfer of inflammatory cytokines across the placenta. Obstet. Gynecol. 2004 103 3 546 550 10.1097/01.AOG.0000114980.40445.83 14990420
    [Google Scholar]
  59. Özdemir H.H. Akil E. Acar A. Tamam Y. Varol S. Cevik M.U. Arikanoglu A. Changes in serum albumin levels and neutrophil–lymphocyte ratio in patients with convulsive status epilepticus. Int. J. Neurosci. 2017 127 5 417 420 10.1080/00207454.2016.1187606 27161531
    [Google Scholar]
  60. Silverberg J. Ginsburg D. Orman R. Amassian V. Durkin H.G. Stewart M. Lymphocyte infiltration of neocortex and hippocampus after a single brief seizure in mice. Brain Behav. Immun. 2010 24 2 263 272 10.1016/j.bbi.2009.10.006 19822204
    [Google Scholar]
  61. Kumar P. Shih D.C.W. Lim A. Paleja B. Ling S. Li Yun L. Li Poh S. Ngoh A. Arkachaisri T. Yeo J.G. Albani S. Proinflammatory IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy. JCI Insight 2019 4 8 e126337 10.1172/jci.insight.126337 30912766
    [Google Scholar]
  62. Ma X. Reynolds S.L. Baker B.J. Li X. Benveniste E.N. Qin H. IL-17 enhancement of the IL-6 signaling cascade in astrocytes. J. Immunol. 2010 184 9 4898 4906 10.4049/jimmunol.1000142 20351184
    [Google Scholar]
  63. An J. Li H. Xia D. Xu B. Wang J. Qiu H. He J. The role of interleukin-17 in epilepsy. Epilepsy Res. 2022 186 107001 10.1016/j.eplepsyres.2022.107001 35994860
    [Google Scholar]
  64. Xu D. Robinson A.P. Ishii T. Duncan D.A.S. Alden T.D. Goings G.E. Ifergan I. Podojil J.R. Penaloza-MacMaster P. Kearney J.A. Swanson G.T. Miller S.D. Koh S. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J. Exp. Med. 2018 215 4 1169 1186 10.1084/jem.20171285 29487082
    [Google Scholar]
  65. Kostic M. Zivkovic N. Cvetanovic A. Stojanovic I. Colic M. IL-17 signalling in astrocytes promotes glutamate excitotoxicity: Indications for the link between inflammatory and neurodegenerative events in multiple sclerosis. Mult. Scler. Relat. Disord. 2017 11 12 17 10.1016/j.msard.2016.11.006 28104249
    [Google Scholar]
  66. Luo H. Liu H.Z. Zhang W.W. Matsuda M. Lv N. Chen G. Xu Z.Z. Zhang Y.Q. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep. 2019 29 8 2384 2397.e5 10.1016/j.celrep.2019.10.085 31747607
    [Google Scholar]
  67. Stellwagen D. Malenka R.C. Synaptic scaling mediated by glial TNF-α. Nature 2006 440 7087 1054 1059 10.1038/nature04671 16547515
    [Google Scholar]
  68. Takeuchi H. Jin S. Wang J. Zhang G. Kawanokuchi J. Kuno R. Sonobe Y. Mizuno T. Suzumura A. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem. 2006 281 30 21362 21368 10.1074/jbc.M600504200 16720574
    [Google Scholar]
  69. Galic M.A. Riazi K. Pittman Q.J. Cytokines and brain excitability. Front. Neuroendocrinol. 2012 33 1 116 125 10.1016/j.yfrne.2011.12.002 22214786
    [Google Scholar]
  70. Rabidas S.S. Prakash C. Tyagi J. Suryavanshi J. Kumar P. Bhattacharya J. Sharma D. A comprehensive review on anti-inflammatory response of flavonoids in experimentally-induced epileptic seizures. Brain Sci. 2023 13 1 102 10.3390/brainsci13010102 36672083
    [Google Scholar]
  71. Spencer J.P.E. Vafeiadou K. Williams R.J. Vauzour D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. Mol. Aspects Med. 2012 33 1 83 97 10.1016/j.mam.2011.10.016 22107709
    [Google Scholar]
  72. Zhang Y. Zhang M. Zhu W. Pan X. Wang Q. Gao X. Wang C. Zhang X. Liu Y. Li S. Sun H. Role of elevated thrombospondin-1 in kainic acid-induced status Epilepticus. Neurosci. Bull. 2020 36 3 263 276 10.1007/s12264‑019‑00437‑x 31664678
    [Google Scholar]
  73. Bosco D.B. Tian D.S. Wu L.J. Neuroimmune interaction in seizures and epilepsy: Focusing on monocyte infiltration. FEBS J. 2020 287 22 4822 4837 10.1111/febs.15428 32473609
    [Google Scholar]
  74. Cerri C. Genovesi S. Allegra M. Pistillo F. Püntener U. Guglielmotti A. Perry V.H. Bozzi Y. Caleo M. The chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation. J. Neurosci. 2016 36 13 3777 3788 10.1523/JNEUROSCI.0451‑15.2016 27030762
    [Google Scholar]
  75. Bianchi M.E. Manfredi A.A. High‐mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol. Rev. 2007 220 1 35 46 10.1111/j.1600‑065X.2007.00574.x 17979838
    [Google Scholar]
  76. Zhu M Chen J Guo H Ding L Zhang Y Xu Y. High mobility group protein B1 (HMGB1) and Interleukin-1β as prognostic biomarkers of epilepsy in children. J Child Neurol 2018 33 14 909 917
    [Google Scholar]
  77. Zhao J. Zheng Y. Liu K. Chen J. Lai N. Fei F. Shi J. Xu C. Wang S. Nishibori M. Wang Y. Chen Z. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics 2020 17 2 710 721 10.1007/s13311‑019‑00815‑3 31802434
    [Google Scholar]
  78. Hanke M.L. Kielian T. Toll-like receptors in health and disease in the brain: Mechanisms and therapeutic potential. Clin. Sci. 2011 121 9 367 387 10.1042/CS20110164 21745188
    [Google Scholar]
  79. Bronisz E. Kurkowska-Jastrzebska I. Matrix Metalloproteinase 9 in Epilepsy: The role of neuroinflammation in seizure development. Mediators Inflame 2016
    [Google Scholar]
  80. Acar G. Tanriover G. Acar F. Demir R. Increased expression of Matrix Metalloproteinase-9 in patients with Temporal Lobe Epilepsy. Turk Neurosurg. 2015 25 5 749 756 26442541
    [Google Scholar]
  81. Bordon Y. Hushing mTOR boosts immunity to pathogens. Nat. Rev. Immunol. 2013 13 12 847 10.1038/nri3562 24189577
    [Google Scholar]
  82. Nowak W. Grendas L.N. Sanmarco L.M. Estecho I.G. Arena Á.R. Eberhardt N. Rodante D.E. Aoki M.P. Daray F.M. Carrera Silva E.A. Errasti A.E. Pro-inflammatory monocyte profile in patients with major depressive disorder and suicide behaviour and how ketamine induces anti-inflammatory M2 macrophages by NMDAR and mTOR. EBioMedicine 2019 50 290 305 10.1016/j.ebiom.2019.10.063 31753725
    [Google Scholar]
  83. Dey A. Kang X. Qiu J. Du Y. Jiang J. Anti-inflammatory small molecules to treat seizures and Epilepsy: From bench to bedside. Trends Pharmacol. Sci. 2016 37 6 463 484 10.1016/j.tips.2016.03.001 27062228
    [Google Scholar]
  84. Malekmohammad K. Riva A. Rafieian-Kopaei M. Editorial: Recent advances in the treatment of epilepsy. Front. Pharmacol. 2024 15 1444138 10.3389/fphar.2024.1444138 39015368
    [Google Scholar]
  85. Belete T.M. Recent progress in the development of new antiepileptic drugs with novel targets. Ann. Neurosci. 2023 30 4 262 276 10.1177/09727531231185991 38020406
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560347296250211081124
Loading
/content/journals/cpsp/10.2174/0122115560347296250211081124
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: chemokines ; Epilepsy ; cytokines ; blood-brain barrier ; neuroinflammation ; astrocytes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test