Skip to content
2000
Volume 13, Issue 1
  • ISSN: 2211-5560
  • E-ISSN: 2211-5579

Abstract

Epilepsy is the second most typical chronic disorder, described by recurrent seizures and uncontrolled electrical signaling from neurons in the cerebral cortex. Stimulated astrocytes, along with microglia, promote cytokines that cause neuroinflammation, leading to a chain reaction of subsequent steps involving neurons as well as endothelial cells along the blood-brain barrier. Inflammation in the brain’s neural network can cause convulsions and epilepsy. The migration of albumin proteins and the infiltration of peripheral immune cells from the serum into the brain disrupt BBB, which, in turn, activates astrocytes and microglia, which stimulate pro-inflammatory mediators like cytokines, chemokines, and other inflammatory mediators. They increase the glutamate level and cause an influx of calcium ions, leading to the production of less GABA and a decrease in the influx of chloride ions. These events exacerbate the inflammatory process that leads to neuronal excitability and contribute further to the development of epilepsy. In this review, we discuss how astrocytes, microglia, and neurons stimulate cytokines, chemokines, and other inflammatory mediators that play an essential role in the development of epilepsy. This review also explore how the permeability of the blood-brain barrier promotes neuroinflammation and contributes to epileptogenesis. The purpose of this review is to present knowledge on neuroinflammation so that new antiepileptic drugs can be developed to prevent this disorder.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560347296250211081124
2025-01-01
2025-06-23
Loading full text...

Full text loading...

References

  1. ScharfmanH. The dentate gyrus and temporal lobe epilepsy: An "exciting" era.Epilepsy Curr.2019194249255
    [Google Scholar]
  2. Epilepsy.2024Available from: https://www.who.int/news-room/fact-sheets/detail/epilepsy
  3. YamanakaG. MorichiS. TakamatsuT. WatanabeY. SuzukiS. IshidaY. OanaS. YamazakiT. TakataF. KawashimaH. Links between immune cells from the periphery and the brain in the pathogenesis of epilepsy: A narrative review.Int. J. Mol. Sci.2021229439510.3390/ijms2209439533922369
    [Google Scholar]
  4. BeghiE. The Epidemiology of Epilepsy.Neuroepidemiology202054218519110.1159/00050383131852003
    [Google Scholar]
  5. VezzaniA. FrenchJ. BartfaiT. BaramT.Z. The role of inflammation in epilepsy.Nat. Rev. Neurol.201171314010.1038/nrneurol.2010.17821135885
    [Google Scholar]
  6. FabeneP.F. MoraG.N. MartinelloM. RossiB. MerigoF. OttoboniL. BachS. AngiariS. BenatiD. ChakirA. ZanettiL. SchioF. OsculatiA. MarzolaP. NicolatoE. HomeisterJ.W. XiaL. LoweJ.B. McEverR.P. OsculatiF. SbarbatiA. ButcherE.C. ConstantinG. A role for leukocyte-endothelial adhesion mechanisms in epilepsy.Nat. Med.200814121377138310.1038/nm.187819029985
    [Google Scholar]
  7. SanzP. RubioT. Garcia-GimenoM.A. Neuroinflammation and epilepsy: From pathophysiology to therapies based on repurposing drugs.Int. J. Mol. Sci.2024258416110.3390/ijms2508416138673747
    [Google Scholar]
  8. WolinskiP. Ksiazek-WiniarekD. GlabinskiA. Cytokines and Neurodegeneration in Epileptogenesis.Brain Sci.202212338010.3390/brainsci1203038035326336
    [Google Scholar]
  9. PeekS.I. TweleF. MellerS. PackerR.M.A. VolkH.A. Epilepsy is more than a simple seizure disorder: Causal relationships between epilepsy and its comorbidities.Vet. J.202430310606110.1016/j.tvjl.2023.10606138123062
    [Google Scholar]
  10. MukhtarI. Inflammatory and immune mechanisms underlying epileptogenesis and epilepsy: From pathogenesis to treatment target.Seizure202082657910.1016/j.seizure.2020.09.01533011590
    [Google Scholar]
  11. TemkinN.R. Preventing and treating posttraumatic seizures: The human experience.Epilepsia200950s2Suppl. 2101310.1111/j.1528‑1167.2008.02005.x19187289
    [Google Scholar]
  12. StraussK.I. ElisevichK.V. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy.J. Neuroinflammation201613127010.1186/s12974‑016‑0727‑z27737716
    [Google Scholar]
  13. MukherjeeS. ArisiG.M. MimsK. HollingsworthG. O’NeilK. ShapiroL.A. Neuroinflammatory mechanisms of post-traumatic epilepsy.J. Neuroinflammation202017119310.1186/s12974‑020‑01854‑w32552898
    [Google Scholar]
  14. ChenJ. YeH. ZhangJ. LiA. NiY. Pathogenesis of seizures and epilepsy after stroke.Acta Epileptol.202241210.1186/s42494‑021‑00068‑8
    [Google Scholar]
  15. KangD.H. HeoR.W. YiC. KimH. ChoiC.H. RohG.S. High-fat diet-induced obesity exacerbates kainic acid-induced hippocampal cell death.BMC Neurosci.20151617210.1186/s12868‑015‑0202‑226518260
    [Google Scholar]
  16. RanaA. MustoA.E. The role of inflammation in the development of epilepsy.J. Neuroinflammation201815114410.1186/s12974‑018‑1192‑729764485
    [Google Scholar]
  17. MustoA.E. RosencransR.F. WalkerC.P. BhattacharjeeS. RauljiC.M. BelayevL. FangZ. GordonW.C. BazanN.G. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism.Sci. Rep.2016613029810.1038/srep3029827444269
    [Google Scholar]
  18. HauserW.A. BeghiE. First seizure definitions and worldwide incidence and mortality.Epilepsia200849s1Suppl. 181210.1111/j.1528‑1167.2008.01443.x18184148
    [Google Scholar]
  19. FiestK.M. SauroK.M. WiebeS. PattenS.B. KwonC.S. DykemanJ. PringsheimT. LorenzettiD.L. JettéN. Prevalence and incidence of epilepsy.Neurology201788329630310.1212/WNL.000000000000350927986877
    [Google Scholar]
  20. BeghiE. GiussaniG. Aging and the Epidemiology of Epilepsy.Neuroepidemiology2018513-421622310.1159/00049348430253417
    [Google Scholar]
  21. TrinkaE. KwanP. LeeB. DashA. Epilepsy in Asia: Disease burden, management barriers, and challenges.Epilepsia201960S1Suppl. 172110.1111/epi.1445829953579
    [Google Scholar]
  22. NiriayoY.L. MamoA. GideyK. DemozG.T. Medication Belief and Adherence among Patients with Epilepsy.Behav. Neurol.201920191710.1155/2019/280634131178940
    [Google Scholar]
  23. RobelS. Astroglial Scarring and Seizures.Neuroscientist201723215216810.1177/107385841664549827118807
    [Google Scholar]
  24. DevinskyO. VezzaniA. NajjarS. De LanerolleN.C. RogawskiM.A. Glia and epilepsy: Excitability and inflammation.Trends Neurosci.201336317418410.1016/j.tins.2012.11.00823298414
    [Google Scholar]
  25. DavidY. CacheauxL.P. IvensS. LapiloverE. HeinemannU. KauferD. FriedmanA. Astrocytic dysfunction in epileptogenesis: Consequence of altered potassium and glutamate homeostasis?J. Neurosci.20092934105881059910.1523/JNEUROSCI.2323‑09.200919710312
    [Google Scholar]
  26. YangF. WangJ.C. HanJ.L. ZhaoG. JiangW. Different effects of mild and severe seizures on hippocampal neurogenesis in adult rats.Hippocampus200818546046810.1002/hipo.2040918240317
    [Google Scholar]
  27. VezzaniA. FriedmanA. Brain inflammation as a biomarker in epilepsy.Biomarkers Med.20115560761410.2217/bmm.11.6122003909
    [Google Scholar]
  28. VezzaniA. AronicaE. MazaratiA. PittmanQ.J. Epilepsy and brain inflammation.Exp. Neurol.2013244112110.1016/j.expneurol.2011.09.03321985866
    [Google Scholar]
  29. KöhlingR. WolfartJ. Potassium Channels in Epilepsy.Cold Spring Harb. Perspect. Med.201665a02287110.1101/cshperspect.a02287127141079
    [Google Scholar]
  30. GinhouxF. LimS. HoeffelG. LowD. HuberT. Origin and differentiation of microglia.Front. Cell. Neurosci.201374510.3389/fncel.2013.0004523616747
    [Google Scholar]
  31. FengL. MuruganM. BoscoD.B. LiuY. PengJ. WorrellG.A. WangH.L. TaL.E. RichardsonJ.R. ShenY. WuL.J. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus.Glia20196781434144810.1002/glia.2361631179602
    [Google Scholar]
  32. ZhaoX. LiaoY. MorganS. MathurR. FeustelP. MazurkiewiczJ. QianJ. ChangJ. MathernG.W. AdamoM.A. RitaccioA.L. GruenthalM. ZhuX. HuangY. Noninflammatory changes of microglia are sufficient to cause Epilepsy.Cell Rep.20182282080209310.1016/j.celrep.2018.02.00429466735
    [Google Scholar]
  33. ZengC. HuJ. ChenF. HuangT. ZhangL. The coordination of mtor signaling and non-coding RNA in regulating epileptic neuroinflammation.Front. Immunol.20221392464210.3389/fimmu.2022.92464235898503
    [Google Scholar]
  34. ArakiT. IkegayaY. KoyamaR. The effects of microglia‐ and astrocyte‐derived factors on neurogenesis in health and disease.Eur. J. Neurosci.20215455880590110.1111/ejn.1496932920880
    [Google Scholar]
  35. LeeD.J. HsuM.S. SeldinM.M. ArellanoJ.L. BinderD.K. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis.Exp. Neurol.2012235124625510.1016/j.expneurol.2012.02.00222361023
    [Google Scholar]
  36. de GrootM. IyerA. ZuroloE. AninkJ. HeimansJ.J. BoisonD. ReijneveldJ.C. AronicaE. Overexpression of ADK in human astrocytic tumors and peritumoral tissue is related to tumor‐associated epilepsy.Epilepsia2012531586610.1111/j.1528‑1167.2011.03306.x22092111
    [Google Scholar]
  37. JiangX. AndjelkovicA.V. ZhuL. YangT. BennettM.V.L. ChenJ. KeepR.F. ShiY. Blood-brain barrier dysfunction and recovery after ischemic stroke.Prog. Neurobiol.2018163-16414417110.1016/j.pneurobio.2017.10.00128987927
    [Google Scholar]
  38. DharmasarojaP.A. Fluid intake related to brain edema in acute middle cerebral artery infarction.Transl. Stroke Res.201671495310.1007/s12975‑015‑0439‑126666449
    [Google Scholar]
  39. van VlietE.A. AronicaE. GorterJ.A. Blood–brain barrier dysfunction, seizures and epilepsy.Semin. Cell Dev. Biol.201538263410.1016/j.semcdb.2014.10.00325444846
    [Google Scholar]
  40. ObyE. JanigroD. The blood-brain barrier and epilepsy.Epilepsia200647111761177410.1111/j.1528‑1167.2006.00817.x17116015
    [Google Scholar]
  41. VarvelN.H. NeherJ.J. BoschA. WangW. RansohoffR.M. MillerR.J. DingledineR. Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus.Proc. Natl. Acad. Sci. USA201611338E5665E567410.1073/pnas.160426311327601660
    [Google Scholar]
  42. de VriesE.E. van den MunckhofB. BraunK.P.J. van Royen-KerkhofA. de JagerW. JansenF.E. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis.Neurosci. Biobehav. Rev.20166317719010.1016/j.neubiorev.2016.02.00726877106
    [Google Scholar]
  43. LiW. WuJ. ZengY. ZhengW. Neuroinflammation in epileptogenesis: From pathophysiology to therapeutic strategies.Front. Immunol.202314126924110.3389/fimmu.2023.126924138187384
    [Google Scholar]
  44. RavizzaT. GagliardiB. NoéF. BoerK. AronicaE. VezzaniA. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy.Neurobiol. Dis.200829114216010.1016/j.nbd.2007.08.01217931873
    [Google Scholar]
  45. VezzaniA. BalossoS. RavizzaT. The role of cytokines in the pathophysiology of epilepsy.Brain Behav. Immun.200822679780310.1016/j.bbi.2008.03.00918495419
    [Google Scholar]
  46. VezzaniA. BaramT.Z. New roles for interleukin-1 Beta in the mechanisms of epilepsy.Epilepsy Curr.200772455010.1111/j.1535‑7511.2007.00165.x17505552
    [Google Scholar]
  47. ChenY. NagibM.M. YasmenN. SluterM.N. LittlejohnT.L. YuY. JiangJ. Neuroinflammatory mediators in acquired epilepsy: An update.Inflamm. Res.202372468370110.1007/s00011‑023‑01700‑836745211
    [Google Scholar]
  48. VezzaniA. MonetaD. RichichiC. AliprandiM. BurrowsS.J. RavizzaT. PeregoC. De SimoniM.G. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis.Epilepsia200243s5Suppl. 5303510.1046/j.1528‑1157.43.s.5.14.x12121291
    [Google Scholar]
  49. AlyuF. DikmenM. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms.Acta Neuropsychiatr.201729111610.1017/neu.2016.4727692004
    [Google Scholar]
  50. VivianiB. BartesaghiS. GardoniF. VezzaniA. BehrensM.M. BartfaiT. BinagliaM. CorsiniE. Di LucaM. GalliC.L. MarinovichM. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases.J. Neurosci.200323258692870010.1523/JNEUROSCI.23‑25‑08692.200314507968
    [Google Scholar]
  51. RosetiC. van VlietE.A. CifelliP. RuffoloG. BaayenJ.C. Di CastroM.A. BertolliniC. LimatolaC. AronicaE. VezzaniA. PalmaE. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis.Neurobiol. Dis.20158231132010.1016/j.nbd.2015.07.00326168875
    [Google Scholar]
  52. HanT. QinY. MouC. WangM. JiangM. LiuB. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway.Am. J. Transl. Res.20168104499450927830035
    [Google Scholar]
  53. ShiL. ChenR. ZhangH. JiangC. GongJ. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures.Childs Nerv. Syst.201733580581110.1007/s00381‑017‑3359‑428236069
    [Google Scholar]
  54. SamuelssonA.M. JennischeE. HanssonH.A. HolmängA. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA A dysregulation and impaired spatial learning.Am. J. Physiol. Regul. Integr. Comp. Physiol.20062905R1345R135610.1152/ajpregu.00268.200516357100
    [Google Scholar]
  55. ErtaM. QuintanaA. HidalgoJ. Interleukin-6, a major cytokine in the central nervous system.Int. J. Biol. Sci.2012891254126610.7150/ijbs.467923136554
    [Google Scholar]
  56. KalueffA.V. LehtimakiK.A. YlinenA. HonkaniemiJ. PeltolaJ. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats.Neurosci. Lett.2004365210611010.1016/j.neulet.2004.04.06115245788
    [Google Scholar]
  57. De SarroG. RussoE. FerreriG. GiuseppeB. FloccoM.A. Di PaolaE.D. De SarroA. Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice.Pharmacol. Biochem. Behav.200477476176610.1016/j.pbb.2004.01.01215099921
    [Google Scholar]
  58. ZaretskyM.V. AlexanderJ.M. ByrdW. BawdonR.E. Transfer of inflammatory cytokines across the placenta.Obstet. Gynecol.2004103354655010.1097/01.AOG.0000114980.40445.8314990420
    [Google Scholar]
  59. ÖzdemirH.H. AkilE. AcarA. TamamY. VarolS. CevikM.U. ArikanogluA. Changes in serum albumin levels and neutrophil–lymphocyte ratio in patients with convulsive status epilepticus.Int. J. Neurosci.2017127541742010.1080/00207454.2016.118760627161531
    [Google Scholar]
  60. SilverbergJ. GinsburgD. OrmanR. AmassianV. DurkinH.G. StewartM. Lymphocyte infiltration of neocortex and hippocampus after a single brief seizure in mice.Brain Behav. Immun.201024226327210.1016/j.bbi.2009.10.00619822204
    [Google Scholar]
  61. KumarP. ShihD.C.W. LimA. PalejaB. LingS. Li YunL. Li PohS. NgohA. ArkachaisriT. YeoJ.G. AlbaniS. Proinflammatory IL-17 pathways dominate the architecture of the immunome in pediatric refractory epilepsy.JCI Insight201948e12633710.1172/jci.insight.12633730912766
    [Google Scholar]
  62. MaX. ReynoldsS.L. BakerB.J. LiX. BenvenisteE.N. QinH. IL-17 enhancement of the IL-6 signaling cascade in astrocytes.J. Immunol.201018494898490610.4049/jimmunol.100014220351184
    [Google Scholar]
  63. AnJ. LiH. XiaD. XuB. WangJ. QiuH. HeJ. The role of interleukin-17 in epilepsy.Epilepsy Res.202218610700110.1016/j.eplepsyres.2022.10700135994860
    [Google Scholar]
  64. XuD. RobinsonA.P. IshiiT. DuncanD.A.S. AldenT.D. GoingsG.E. IferganI. PodojilJ.R. Penaloza-MacMasterP. KearneyJ.A. SwansonG.T. MillerS.D. KohS. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy.J. Exp. Med.201821541169118610.1084/jem.2017128529487082
    [Google Scholar]
  65. KosticM. ZivkovicN. CvetanovicA. StojanovicI. ColicM. IL-17 signalling in astrocytes promotes glutamate excitotoxicity: Indications for the link between inflammatory and neurodegenerative events in multiple sclerosis.Mult. Scler. Relat. Disord.201711121710.1016/j.msard.2016.11.00628104249
    [Google Scholar]
  66. LuoH. LiuH.Z. ZhangW.W. MatsudaM. LvN. ChenG. XuZ.Z. ZhangY.Q. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy.Cell Rep.201929823842397.e510.1016/j.celrep.2019.10.08531747607
    [Google Scholar]
  67. StellwagenD. MalenkaR.C. Synaptic scaling mediated by glial TNF-α.Nature200644070871054105910.1038/nature0467116547515
    [Google Scholar]
  68. TakeuchiH. JinS. WangJ. ZhangG. KawanokuchiJ. KunoR. SonobeY. MizunoT. SuzumuraA. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner.J. Biol. Chem.200628130213622136810.1074/jbc.M60050420016720574
    [Google Scholar]
  69. GalicM.A. RiaziK. PittmanQ.J. Cytokines and brain excitability.Front. Neuroendocrinol.201233111612510.1016/j.yfrne.2011.12.00222214786
    [Google Scholar]
  70. RabidasS.S. PrakashC. TyagiJ. SuryavanshiJ. KumarP. BhattacharyaJ. SharmaD. A comprehensive review on anti-inflammatory response of flavonoids in experimentally-induced epileptic seizures.Brain Sci.202313110210.3390/brainsci1301010236672083
    [Google Scholar]
  71. SpencerJ.P.E. VafeiadouK. WilliamsR.J. VauzourD. Neuroinflammation: Modulation by flavonoids and mechanisms of action.Mol. Aspects Med.2012331839710.1016/j.mam.2011.10.01622107709
    [Google Scholar]
  72. ZhangY. ZhangM. ZhuW. PanX. WangQ. GaoX. WangC. ZhangX. LiuY. LiS. SunH. Role of elevated thrombospondin-1 in kainic acid-induced status Epilepticus.Neurosci. Bull.202036326327610.1007/s12264‑019‑00437‑x31664678
    [Google Scholar]
  73. BoscoD.B. TianD.S. WuL.J. Neuroimmune interaction in seizures and epilepsy: Focusing on monocyte infiltration.FEBS J.2020287224822483710.1111/febs.1542832473609
    [Google Scholar]
  74. CerriC. GenovesiS. AllegraM. PistilloF. PüntenerU. GuglielmottiA. PerryV.H. BozziY. CaleoM. The chemokine CCL2 mediates the seizure-enhancing effects of systemic inflammation.J. Neurosci.201636133777378810.1523/JNEUROSCI.0451‑15.201627030762
    [Google Scholar]
  75. BianchiM.E. ManfrediA.A. High‐mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity.Immunol. Rev.20072201354610.1111/j.1600‑065X.2007.00574.x17979838
    [Google Scholar]
  76. ZhuM ChenJ GuoH DingL ZhangY XuY. High mobility group protein B1 (HMGB1) and Interleukin-1β as prognostic biomarkers of epilepsy in children.J Child Neurol20183314909917
    [Google Scholar]
  77. ZhaoJ. ZhengY. LiuK. ChenJ. LaiN. FeiF. ShiJ. XuC. WangS. NishiboriM. WangY. ChenZ. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window.Neurotherapeutics202017271072110.1007/s13311‑019‑00815‑331802434
    [Google Scholar]
  78. HankeM.L. KielianT. Toll-like receptors in health and disease in the brain: Mechanisms and therapeutic potential.Clin. Sci.2011121936738710.1042/CS2011016421745188
    [Google Scholar]
  79. BroniszE. Kurkowska-JastrzebskaI. Matrix Metalloproteinase 9 in Epilepsy: The role of neuroinflammation in seizure development.Mediators Inflame2016
    [Google Scholar]
  80. AcarG. TanrioverG. AcarF. DemirR. Increased expression of Matrix Metalloproteinase-9 in patients with Temporal Lobe Epilepsy.Turk Neurosurg.201525574975626442541
    [Google Scholar]
  81. BordonY. Hushing mTOR boosts immunity to pathogens.Nat. Rev. Immunol.2013131284710.1038/nri356224189577
    [Google Scholar]
  82. NowakW. GrendasL.N. SanmarcoL.M. EstechoI.G. ArenaÁ.R. EberhardtN. RodanteD.E. AokiM.P. DarayF.M. Carrera SilvaE.A. ErrastiA.E. Pro-inflammatory monocyte profile in patients with major depressive disorder and suicide behaviour and how ketamine induces anti-inflammatory M2 macrophages by NMDAR and mTOR.EBioMedicine20195029030510.1016/j.ebiom.2019.10.06331753725
    [Google Scholar]
  83. DeyA. KangX. QiuJ. DuY. JiangJ. Anti-inflammatory small molecules to treat seizures and Epilepsy: From bench to bedside.Trends Pharmacol. Sci.201637646348410.1016/j.tips.2016.03.00127062228
    [Google Scholar]
  84. MalekmohammadK. RivaA. Rafieian-KopaeiM. Editorial: Recent advances in the treatment of epilepsy.Front. Pharmacol.202415144413810.3389/fphar.2024.144413839015368
    [Google Scholar]
  85. BeleteT.M. Recent progress in the development of new antiepileptic drugs with novel targets.Ann. Neurosci.202330426227610.1177/0972753123118599138020406
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560347296250211081124
Loading
/content/journals/cpsp/10.2174/0122115560347296250211081124
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): astrocytes; blood-brain barrier; chemokines; cytokines; Epilepsy; neuroinflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test