Skip to content
2000
image of The Present Difficulties and Potential Benefits of Dopaminergic Agents in Parkinson's Disease Treatment

Abstract

Parkinson's disease (PD) is a progressive neurological condition characterized by bradykinesia, rigidity, tremors, and impaired balance, among other motor impairments. The issue arises from dopaminergic neurons located in the spinal column of the brain. This research report examines the therapeutic potential of dopaminergic medications in the management of Parkinson's disease. The central concept of Parkinson's disease (PD) revolves around the notion that dopaminergic pathways exert significant influence over the regulation of movement. The book examines various dopaminergic medications, elucidating their mechanisms of action and the impact they exert on dopamine signaling. Examples of these medications include levodopa, dopamine agonists, and monoamine oxidase-B (MAO-B) inhibitors. Although dopaminergic medicines initially aid in the treatment of Parkinson's disease (PD), prolonged usage of these medications gives rise to several complications. Experiencing dyskinesias and motor fluctuations, characterized by episodes of involuntary movements and behaviors that are undesired, is a significant challenge. This study investigates the underlying causes of these difficulties and explores potential treatment options, including the use of controlled-release formulations and further therapy. The book discusses the non-motor symptoms of Parkinson's disease (PD), as well as the use of dopaminergic medications to treat mood disorders, autonomic dysfunction, and cognitive loss. Dopaminergic medications remain crucial in reducing motor symptoms and enhancing the quality of life for those with Parkinson's disease. Parkinson's disease (PD) is a complex condition with multiple distinct variations. In order to address its existing challenges and explore its potential implications for future Parkinson's disease medications, a comprehensive and effectively coordinated strategy is required.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560332182241031050521
2024-11-12
2025-01-19
Loading full text...

Full text loading...

References

  1. Stoker T.B. Barker R.A. Recent developments in the treatment of parkinson’s disease. F1000Res. 9 2020 10.12688/f1000research.25634.1 32789002
    [Google Scholar]
  2. Koller W.C. Rueda M.G. Mechanism of action of dopaminergic agents in Parkinson’s disease. Neurology 1998 50 Suppl 6 S11 S14 10.1212/WNL.50.6_Suppl_6.S11 9633680
    [Google Scholar]
  3. Voon V. Fernagut P.O. Wickens J. Baunez C. Rodriguez M. Pavon N. Juncos J.L. Obeso J.A. Bezard E. Chronic dopaminergic stimulation in Parkinson’s disease: From dyskinesias to impulse control disorders. Lancet Neurol. 2009 8 12 1140 1149 10.1016/S1474‑4422(09)70287‑X 19909912
    [Google Scholar]
  4. Emamzadeh F.N. Surguchov A. Parkinson’s disease: Biomarkers, treatment, and risk factors. Front. Neurosci. 2018 12 AUG 612 10.3389/fnins.2018.00612 30214392
    [Google Scholar]
  5. Alexander G.E. Biology of Parkinson’s disease: Pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues Clin. Neurosci. 2004 6 3 259 280 10.31887/DCNS.2004.6.3/galexander 22033559
    [Google Scholar]
  6. Sonne J. Reddy V. Beato M.R. Neuroanatomy, Substantia Nigra StatPearls Publishing Treasure Island (FL) 2022 30725680
    [Google Scholar]
  7. Juárez Olguín H. Calderón Guzmán D. Hernández García E. Barragán Mejía G. The role of dopamine and its dysfunction as a consequence of oxidative stress. Oxid. Med. Cell Longev. 2016 2016 9730467 10.1155/2016/9730467 26770661
    [Google Scholar]
  8. Dias V. Junn E. Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis. 2013 3 4 461 491 10.3233/JPD‑130230 24252804
    [Google Scholar]
  9. Magrinelli F. Picelli A. Tocco P. Federico A. Roncari L. Smania N. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation. Parkinsons Dis. 2016 2016 9832839 10.1155/2016/9832839 27366343
    [Google Scholar]
  10. Gómez-Benito M. Granado N. García-Sanz P. Michel A. Dumoulin M. Moratalla R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol. 2020 11 356 10.3389/fphar.2020.00356 32390826
    [Google Scholar]
  11. Jankovic J. Aguilar L.G. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008 4 4 743 757 10.2147/NDT.S2006 19043519
    [Google Scholar]
  12. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012 2 2 a009399 10.1101/cshperspect.a009399 22355802
    [Google Scholar]
  13. Goldenberg M.M. Medical management of Parkinson’s disease. P T 2008 33 10 590 606 19750042
    [Google Scholar]
  14. Haddad F. Sawalha M. Khawaja Y. Najjar A. Karaman R. Dopamine and levodopa prodrugs for the treatment of parkinson's disease. Molecules 23 1 40 2018 10.3390/molecules23010040 29295587
    [Google Scholar]
  15. Tambasco N. Romoli M. Calabresi P. Levodopa in Parkinson’s disease: Current status and future developments. Curr. Neuropharmacol. 2018 16 8 1239 1252 10.2174/1570159X15666170510143821 28494719
    [Google Scholar]
  16. Suski V. Stacy M. Dopamine Agonists StatPearls Publishing Treasure Island (FL) 2023 31869150
    [Google Scholar]
  17. Alborghetti M. Nicoletti F. Different Generations of Type-B Monoamine Oxidase Inhibitors in Parkinson’s Disease: From Bench to Bedside. Curr. Neuropharmacol. 2019 17 9 861 873 10.2174/1570159X16666180830100754 30160213
    [Google Scholar]
  18. Rivest J. Barclay C.L. Suchowersky O. COMT inhibitors in Parkinson's disease. Can. J. Neurol. Sci. 1999 26 Suppl 2 S34 S38 10.1017/S031716710000007X 10451758
    [Google Scholar]
  19. Ossola B. Schendzielorz N. Chen S.H. Bird G.S. Tuominen R.K. Männistö P.T. Hong J.S. Amantadine protects dopamine neurons by a dual action: Reducing activation of microglia and inducing expression of GNDF in astroglia. Neuropharmacology 2011 61 4 574 582 10.1016/j.neuropharm.2011.04.030 21586298
    [Google Scholar]
  20. Hisahara S. Shimohama S. Dopamine receptors and Parkinson’s disease. Int. J. Med. Chem. 2011 2011 1 16 10.1155/2011/403039 25954517
    [Google Scholar]
  21. Deik A. Saunders-Pullman R. San Luciano M. Substance of abuse and movement disorders: Complex interactions and comorbidities. Curr. Drug Abuse Rev. 2012 5 3 243 253 10.2174/1874473711205030243 23030352
    [Google Scholar]
  22. Thanvi B. Lo N. Robinson T. Levodopa-induced dyskinesia in Parkinson’s disease: Clinical features, pathogenesis, prevention and treatment. Postgrad. Med. J. 2007 83 980 384 388 10.1136/pgmj.2006.054759 17551069
    [Google Scholar]
  23. Borovac J.A. Side effects of a dopamine agonist therapy for Parkinson’s disease: A mini-review of clinical pharmacology. Yale J. Biol. Med. 2016 89 1 37 47 27505015
    [Google Scholar]
  24. Navakauskienė R. Chapter 41 - Combination epigenetic therapy. Handbook of Epigenetics Elsevier 2nd ed 2017 623 832 10.1016/B978‑0‑12‑805388‑1.00041‑9
    [Google Scholar]
  25. Lv Q. Wang X. Asakawa T. Wang X.P. Pharmacologic treatment of restless legs syndrome. Curr. Neuropharmacol. 2021 19 3 372 382 10.2174/1570159X19666201230150127 33380302
    [Google Scholar]
  26. Faraone S.V. The pharmacology of amphetamine and methylphenidate: Relevance to the neurobiology of attention-deficit/hyperactivity disorder and other psychiatric comorbidities. Neurosci. Biobehav. Rev. 2018 87 255 270 10.1016/j.neubiorev.2018.02.001 29428394
    [Google Scholar]
  27. O’Connor A.D. Mills K.C. Monoamine oxidase inhibitors. Critical Care Toxicology Springer Cham Brent J. Burkhart K. Dargan P. Hatten B. Megarbane B. Palmer R. 2016 1 18 10.1007/978‑3‑319‑20790‑2_28‑2
    [Google Scholar]
  28. Stahl S.M. Pradko J.F. Haight B.R. Modell J.G. Rockett C.B. Learned-Coughlin S. A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim. Care Companion J. Clin. Psychiatry 2004 6 4 159 166 15361919
    [Google Scholar]
  29. Wilkes S. The use of bupropion SR in cigarette smoking cessation. Int. J. Chron. Obstruct. Pulmon. Dis. 2008 3 1 45 53 10.2147/COPD.S1121 18488428
    [Google Scholar]
  30. Methadone maintenance treatment. Clinical Guidelines for Withdrawal Management and Treatment of Drug Dependence in Closed Settings World Health Organization Geneva
    [Google Scholar]
  31. Yang P. Perlmutter J.S. Benzinger T.L.S. Morris J.C. Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res. Rev. 2020 57 100994 10.1016/j.arr.2019.100994 31765822
    [Google Scholar]
  32. Kirkeby A. Parmar M. Barker R.A. Strategies for bringing stem cell-derived dopamine neurons to the clinic. Prog. Brain Res. 2017 230 165 190 10.1016/bs.pbr.2016.11.011 28552228
    [Google Scholar]
  33. Grall-Bronnec M. Victorri-Vigneau C. Donnio Y. Leboucher J. Rousselet M. Thiabaud E. Zreika N. Derkinderen P. Challet-Bouju G. Dopamine agonists and impulse control disorders: A complex association. Drug Saf. 2018 41 1 19 75 10.1007/s40264‑017‑0590‑6 28861870
    [Google Scholar]
  34. Robottom B. Efficacy, safety, and patient preference of monoamine oxidase B inhibitors in the treatment of Parkinson’s disease. Patient Prefer. Adherence 2011 5 57 64 10.2147/PPA.S11182 21423589
    [Google Scholar]
  35. Regensburger M. Ip C.W. Kohl Z. Schrader C. Urban P.P. Kassubek J. Jost W.H. Clinical benefit of MAO-B and COMT inhibition in Parkinson’s disease: Practical considerations. J. Neural Transm. (Vienna) 2023 130 6 847 861 10.1007/s00702‑023‑02623‑8 36964457
    [Google Scholar]
  36. Carbone F. Djamshidian A. Seppi K. Poewe W. Apomorphine for Parkinson’s disease: Efficacy and safety of current and new formulations. CNS Drugs 2019 33 9 905 918 10.1007/s40263‑019‑00661‑z 31473980
    [Google Scholar]
  37. Farlow M.R. Somogyi M. Transdermal patches for the treatment of neurologic conditions in elderly patients: A review. Prim. Care Companion CNS Disord. 2011 13 6 PCC.11r01149 10.4088/PCC.11r01149 22454804
    [Google Scholar]
  38. Zhu J. Chen M. The effect and safety of ropinirole in the treatment of Parkinson disease. Medicine (Baltimore) 2021 100 46 e27653 10.1097/MD.0000000000027653 34797288
    [Google Scholar]
  39. Constantinescu R. Update on the use of pramipexole in the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008 4 2 337 352 10.2147/NDT.S2325 18728740
    [Google Scholar]
  40. Bette S. Shpiner D.S. Singer C. Moore H. Safinamide in the management of patients with Parkinson’s disease not stabilized on levodopa: A review of the current clinical evidence. Ther. Clin. Risk Manag. 2018 14 1737 1745 10.2147/TCRM.S139545 30271159
    [Google Scholar]
  41. Church F.C. Treatment options for motor and non-motor symptoms of Parkinson’s disease. Biomolecules 2021 11 4 612 10.3390/biom11040612 33924103
    [Google Scholar]
  42. Ogata N. de Souza Dantas L.M. Crowell-Davis S.L. Selective Serotonin Reuptake Inhibitors Treasure Island (FL) StatPearls Publishing 2023 32119293
    [Google Scholar]
  43. Zhang Q. Aldridge G.M. Narayanan N.S. Anderson S.W. Uc E.Y. Approach to cognitive impairment in Parkinson’s disease. Neurotherapeutics 2020 17 4 1495 1510 10.1007/s13311‑020‑00963‑x 33205381
    [Google Scholar]
  44. Chen J.J. Treatment of psychotic symptoms in patients with Parkinson disease. Ment. Health Clin. 2017 7 6 262 270 10.9740/mhc.2017.11.262 29955532
    [Google Scholar]
  45. Rivasi G. Rafanelli M. Mossello E. Brignole M. Ungar A. Drug-related orthostatic hypotension: Beyond anti-hypertensive medications. Drugs Aging 2020 37 10 725 738 10.1007/s40266‑020‑00796‑5 32894454
    [Google Scholar]
  46. Buchfuhrer M.J. Strategies for the treatment of restless legs syndrome. Neurotherapeutics 2012 9 4 776 790 10.1007/s13311‑012‑0139‑4 22923001
    [Google Scholar]
  47. Lang-Illievich K. Bornemann-Cimenti H. Opioid-induced constipation: A narrative review of therapeutic options in clinical management. Korean J. Pain 2019 32 2 69 78 10.3344/kjp.2019.32.2.69 31091505
    [Google Scholar]
  48. Pauletti C. Locuratolo N. Mannarelli D. Maffucci A. Petritis A. Menini E. Fattapposta F. Fatigue in fluctuating Parkinson’s disease patients: Possible impact of safinamide. J. Neural Transm. (Vienna) 2023 130 7 915 923 10.1007/s00702‑023‑02654‑1 37210459
    [Google Scholar]
  49. Buhmann C. Kassubek J. Jost W.H. Management of pain in Parkinson’s disease. J. Parkinsons Dis. 2020 10 Suppl 1 S37 S48 10.3233/JPD‑202069 32568113
    [Google Scholar]
  50. Freitas M.E. Fox S.H. Nondopaminergic treatments for Parkinson’s disease: current and future prospects. Neurodegener. Dis. Manag. 2016 6 3 249 268 10.2217/nmt‑2016‑0005 27230697
    [Google Scholar]
  51. Masood N. Jimenez-Shahed J. Effective management of “OFF” episodes in Parkinson’s Disease: Emerging treatment strategies and unmet clinical needs. Neuropsychiatr. Dis. Treat. 2023 19 247 266 10.2147/NDT.S273121 36721795
    [Google Scholar]
  52. DeMaagd G. Philip A. Part 2: Introduction to the pharmacotherapy of Parkinson’s disease, with a focus on the use of dopaminergic agents. P T 2015 40 9 590 600 26417179
    [Google Scholar]
  53. Pandey S. Srivanitchapoom P. Levodopa-induced dyskinesia: Clinical features, pathophysiology, and medical management. Ann. Indian Acad. Neurol. 2017 20 3 190 198 10.4103/aian.AIAN_239_17 28904447
    [Google Scholar]
  54. Smith Y. Wichmann T. Factor S.A. DeLong M.R. Parkinson’s disease therapeutics: New developments and challenges since the introduction of levodopa. Neuropsychopharmacology 2012 37 1 213 246 10.1038/npp.2011.212 21956442
    [Google Scholar]
  55. Espay A.J. Bonato P. Nahab F.B. Maetzler W. Dean J.M. Klucken J. Eskofier B.M. Merola A. Horak F. Lang A.E. Reilmann R. Giuffrida J. Nieuwboer A. Horne M. Little M.A. Litvan I. Simuni T. Dorsey E.R. Burack M.A. Kubota K. Kamondi A. Godinho C. Daneault J.F. Mitsi G. Krinke L. Hausdorff J.M. Bloem B.R. Papapetropoulos S. Technology in Parkinson’s disease: Challenges and opportunities. Mov. Disord. 2016 31 9 1272 1282 10.1002/mds.26642 27125836
    [Google Scholar]
  56. Mittal K.R. Pharasi N. Sarna B. Singh M. Rachana Haider S. Singh S.K. Dua K. Jha S.K. Dey A. Ojha S. Mani S. Jha N.K. Nanotechnology-based drug delivery for the treatment of CNS disorders. Transl. Neurosci. 2022 13 1 527 546 10.1515/tnsci‑2022‑0258 36741545
    [Google Scholar]
  57. Mahoney J.J. Hanlon C.A. Marshalek P.J. Rezai A.R. Krinke L. Transcranial magnetic stimulation, deep brain stimulation, and other forms of neuromodulation for substance use disorders: Review of modalities and implications for treatment. J. Neurol. Sci. 2020 418 117149 10.1016/j.jns.2020.117149 33002757
    [Google Scholar]
  58. Axelsen T.M. Woldbye D.P.D. Gene therapy for Parkinson’s disease, An update. J. Parkinsons Dis. 2018 8 2 195 215 10.3233/JPD‑181331 29710735
    [Google Scholar]
  59. Ul Hassan A. Hassan G. Rasool Z. Role of stem cells in treatment of neurological disorder. Int. J. Health Sci. (Qassim) 2009 3 2 227 233 21475541
    [Google Scholar]
  60. Carrera I. Cacabelos R. Current drugs and potential future neuroprotective compounds for parkinson’s disease. Curr. Neuropharmacol. 2019 17 3 295 306 10.2174/1570159X17666181127125704 30479218
    [Google Scholar]
  61. McCutcheon R.A. Krystal J.H. Howes O.D. Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry 2020 19 1 15 33 10.1002/wps.20693 31922684
    [Google Scholar]
  62. Tyler J. Choi S.W. Tewari M. Real-time, personalized medicine through wearable sensors and dynamic predictive modeling: A new paradigm for clinical medicine. Curr. Opin. Syst. Biol. 2020 20 17 25 10.1016/j.coisb.2020.07.001 32984661
    [Google Scholar]
  63. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  64. Tiwari G. Tiwari R. Bannerjee S.K. Bhati L. Pandey S. Pandey P. Sriwastawa B. Drug delivery systems: An updated review. Int. J. Pharm. Investig. 2012 2 1 2 11 10.4103/2230‑973X.96920 23071954
    [Google Scholar]
  65. Wang R.C. Wang Z. Precision medicine: Disease subtyping and tailored treatment. Cancers (Basel) 2023 15 15 3837 10.3390/cancers15153837 37568653
    [Google Scholar]
  66. Saleh M. Markovic M. Olson K.E. Gendelman H.E. Mosley R.L. Therapeutic strategies for immune transformation in parkinson’s disease. J. Parkinsons Dis. 2022 12 Suppl 1 S201 S222 10.3233/JPD‑223278 35871362
    [Google Scholar]
  67. Rodriguez-Merchan E.C. The current role of disease-modifying osteoarthritis drugs. Arch. Bone Jt. Surg. 2023 11 1 11 22 36793668
    [Google Scholar]
  68. Chmielarz P. Saarma M. Neurotrophic factors for disease-modifying treatments of Parkinson’s disease: Gaps between basic science and clinical studies. Pharmacol. Rep. 2020 72 5 1195 1217 10.1007/s43440‑020‑00120‑3 32700249
    [Google Scholar]
  69. Leathem A. Ortiz-Cerda T. Dennis J.M. Witting P.K. Evidence for oxidative pathways in the pathogenesis of PD: Are antioxidants candidate drugs to ameliorate disease progression? Int. J. Mol. Sci. 2022 23 13 6923 10.3390/ijms23136923 35805928
    [Google Scholar]
  70. Monteiro M.C. Coleman M.D. Hill E.J. Prediger R.D. Maia C.S.F. Neuroprotection in neurodegenerative disease: From basic science to clinical applications. Oxid. Med. Cell Longev. 2017 2017 2949102 10.1155/2017/2949102 28337247
    [Google Scholar]
  71. Miyazaki I. Asanuma M. Multifunctional metallothioneins as a target for neuroprotection in Parkinson’s disease. Antioxidants 2023 12 4 894 10.3390/antiox12040894 37107269
    [Google Scholar]
  72. Johnson K.B. Wei W.Q. Weeraratne D. Frisse M.E. Misulis K. Rhee K. Zhao J. Snowdon J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021 14 1 86 93 10.1111/cts.12884 32961010
    [Google Scholar]
  73. Gandhi K.R. Saadabadi A. Levodopa (L-Dopa) StatPearls Publishing Treasure Island (FL) 2023 29489269
    [Google Scholar]
  74. Wolf S.M. Thyagarajan B. Fogel B.L. The need to develop a patient-centered precision medicine model for adults with chronic disability. Expert Rev. Mol. Diagn. 2017 17 5 415 418 10.1080/14737159.2017.1309976 28325089
    [Google Scholar]
  75. Nakmode D.D. Day C.M. Song Y. Garg S. The management of Parkinson’s disease: An overview of the current advancements in drug delivery systems. Pharmaceutics 2023 15 5 1503 10.3390/pharmaceutics15051503 37242745
    [Google Scholar]
  76. Bohr A. Memarzadeh K. Chapter 2 - The rise of artificial intelligence in healthcare applications. Artificial Intelligence in Healthcare Academic Press 2020 25 60 10.1016/B978‑0‑12‑818438‑7.00002‑2
    [Google Scholar]
  77. Madrid J. Benninger D.H. Non-invasive brain stimulation for Parkinson’s disease: Clinical evidence, latest concepts and future goals: A systematic review. J. Neurosci. Methods 2021 347 108957 10.1016/j.jneumeth.2020.108957 33017643
    [Google Scholar]
  78. Groiss S.J. Wojtecki L. Südmeyer M. Schnitzler A. Review: Deep brain stimulation in Parkinson’s disease. Ther. Adv. Neurol. Disord. 2009 2 6 379 391 10.1177/1756285609339382 21180627
    [Google Scholar]
  79. Pirtošek Z. Bajenaru O. Kovács N. Milanov I. Relja M. Skorvanek M. Update on the management of Parkinson’s disease for general neurologists. Parkinsons Dis. 2020 2020 9131474 10.1155/2020/9131474 32300476
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560332182241031050521
Loading
/content/journals/cpsp/10.2174/0122115560332182241031050521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test