Skip to content
2000
image of Marine Natural Products as Novel Treatments for Alzheimer's Disease

Abstract

Alzheimer's disease is distinguished by gradual changes in behavior because of the aggregation of β-amyloid and τ protein that blocks the signal transduction pathway. It is one of the major problems in the current scenario. It mainly occurs after the age of 60 and eventually leads to memory loss. Nonetheless, medicinal plants have therapeutic potential to improve many diseases. Medicinal drugs with their phytoconstituents may offer therapeutic potential for improving the preventive treatment for Alzheimer's disease. Five synthetic drugs that have been approved by the FDA include Tacrine, Rivastigmine, Donepezil, Galantamine, and Memantine for the symptomatic treatment of Alzheimer's. In the search for effective anti-Alzheimer's drugs from a natural source, we discovered marine resources as the origin of the therapeutic and nutritional compound. The methodology involves conducting a comprehensive literature survey. The database search methodology used in this review was the use of keywords, which can be found in the article pertaining to Alzheimer’s disease. The significant articles focused on marine flora phytoconstituents, such as Acetylcholinesterase or butyrylcholinesterase inhibitors, thus prompting a comprehensive review based on pertinent information. The review included descriptions of various studies, revealing that numerous compounds derived from marine sources have demonstrated promising efficacy in the treatment of Alzheimer's disease. Many compounds that originated from marine sources showed good efficacy in treating Alzheimer’s disease. Acetylcholinesterase or butyrylcholinesterase inhibition was the main pharmacological mechanism that was reported for most of the molecules, however, few articles having alternative anti Alzheimer’s mechanisms have also been reported. This article highlights marine compounds derived from marine sources like algae, fungi, and sponges, which can combat Alzheimer's disease.

Loading

Article metrics loading...

/content/journals/cpsp/10.2174/0122115560329324241203113505
2024-12-13
2025-01-31
Loading full text...

Full text loading...

References

  1. Yu C.X. Wang R.Y. Qi F.M. Su P.J. Yu Y.F. Li B. Zhao Y. Zhi D.J. Zhang Z.X. Fei D.Q. Eupulcherol A, a triterpenoid with a new carbon skeleton from Euphorbia pulcherrima, and its anti-Alzheimer’s disease bioactivity. Org. Biomol. Chem. 2020 18 1 76 80 10.1039/C9OB02334H 31773124
    [Google Scholar]
  2. Lakshmi S. Prakash P. Essa M.M. Qoronfleh W.M. Akbar M. Song B.J. Kumar S. Elumalai P. Marine derived bioactive compounds for treatment of Alzheimer’s disease. Front. Biosci. 2018 10 3 537 548 29772526
    [Google Scholar]
  3. Russo P. Kisialiou A. Lamonaca P. Moroni R. Prinzi G. Fini M. New Drugs from Marine Organisms in Alzheimer’s Disease. Mar. Drugs 2015 14 1 5 10.3390/md14010005 26712769
    [Google Scholar]
  4. Hansen R.A. Gartlehner G. Webb A.P. Morgan L.C. Moore C.G. Jonas D.E. Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. Clin. Interv. Aging 2008 3 2 211 225 18686744
    [Google Scholar]
  5. Mehta M. Adem A. Sabbagh M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis. 2012 2012 12 728983 22216416
    [Google Scholar]
  6. Malve H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016 8 2 83 91 10.4103/0975‑7406.171700 27134458
    [Google Scholar]
  7. El Gamal A.A. Biological importance of marine algae. Saudi Pharm. J. 2010 18 1 1 25 10.1016/j.jsps.2009.12.001 23960716
    [Google Scholar]
  8. Krueger K. Boehme E. Klettner A.K. Zille M. The potential of marine resources for retinal diseases: A systematic review of the molecular mechanisms. Crit. Rev. Food Sci. Nutr. 2022 62 27 7518 7560 10.1080/10408398.2021.1915242 33970706
    [Google Scholar]
  9. Montaser R. Luesch H. Marine natural products: A new wave of drugs? Future Med. Chem. 2011 3 12 1475 1489 10.4155/fmc.11.118 21882941
    [Google Scholar]
  10. Venugopal V. Marine Products for Healthcare: Functional and Bioactive Nutraceutical compounds from the ocean. Functional Food & Nutraceutical Series CRC Press: New-York 2009
    [Google Scholar]
  11. Vogel G. The inner lives of sponges. Science 2008 320 5879 1028 1030 10.1126/science.320.5879.1028 18497285
    [Google Scholar]
  12. Zheng Y. Chen X. Chen L. Shen L. Fu X. Chen Q. Chen M. Wang C. Isolation and neuroprotective activity of phenolic derivatives from the marine-derived fungus Penicillium janthinellum. J. Ocean Univ. China 2020 19 3 700 706 10.1007/s11802‑020‑4286‑7
    [Google Scholar]
  13. Ngo D.H. Vo T.S. Ngo D.N. Wijesekara I. Kim S.K. Biological activities and potential health benefits of bioactive peptides derived from marine organisms. Int. J. Biol. Macromol. 2012 51 4 378 383 10.1016/j.ijbiomac.2012.06.001 22683669
    [Google Scholar]
  14. Yende S. Chaugule B.B. Harle U.N. Therapeutic potential and health benefits of Sargassum species. Pharmacogn. Rev. 2014 8 15 1 7 10.4103/0973‑7847.125514 24600190
    [Google Scholar]
  15. Abo-Shady A.M. Gheda S.F. Ismail G.A. Cotas J. Pereira L. Abdel-Karim O.H. Antioxidant and antidiabetic activity of algae. Life 2023 13 2 460 10.3390/life13020460 36836817
    [Google Scholar]
  16. Ibrahim T.N.B.T. Feisal N.A.S. Kamaludin N.H. Cheah W.Y. How V. Bhatnagar A. Ma Z. Show P.L. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. Bioresour. Technol. 2023 372 128661 10.1016/j.biortech.2023.128661 36690215
    [Google Scholar]
  17. Biskupiak Z. Ha V.V. Rohaj A. Bulaj G. Digital therapeutics for improving effectiveness of pharmaceutical drugs and biological products: Preclinical and clinical studies supporting development of drug + digital combination therapies for chronic diseases. J. Clin. Med. 2024 13 2 403 10.3390/jcm13020403 38256537
    [Google Scholar]
  18. Ortega H.E. Lourenzon V.B. Chevrette M.G. Ferreira L.L.G. Alvarenga R.F.R. Melo W.G.P. Venâncio T. Currie C.R. Andricopulo A.D. Bugni T.S. Pupo M.T. Antileishmanial macrolides from ant-associated Streptomyces sp. ISID311. Bioorg. Med. Chem. 2021 32 116016 10.1016/j.bmc.2021.116016 33493972
    [Google Scholar]
  19. Khare E. The interplay of marine exposure in gestational diabetes. Curr. Womens Health Rev. 2021 17 1 4 13 10.2174/1573404816999200914152625
    [Google Scholar]
  20. Brillatz T. Lauritano C. Jacmin M. Khamma S. Marcourt L. Righi D. Romano G. Esposito F. Ianora A. Queiroz E.F. Wolfender J.L. Crawford A.D. Zebrafish-based identification of the antiseizure nucleoside inosine from the marine diatom Skeletonema marinoi. PLoS One 2018 13 4 e0196195 10.1371/journal.pone.0196195 29689077
    [Google Scholar]
  21. Schepers Melissa Martens Nikita Tiane Assia Edible seaweed-derived constituents: An undisclosed source of neuroprotective compounds. Neural Regen Res. 2020 15 5 790 795
    [Google Scholar]
  22. Nyiew K-Y. Ngu E-L. Wong K-H. Goh B-H. Yow Y-Y. Neuroprotective potential of marine algal antioxidants. Marine antioxidants. UK & USA Academic Press 2023 341 353 10.1016/B978‑0‑323‑95086‑2.00030‑8
    [Google Scholar]
  23. Ekta K. Natural Antioxidants in the Management of Alzheimer’s Disease Book Antioxidant-Based Therapies for Disease Prevention and Management. 1st ed Apple Academic Press 2021 18
    [Google Scholar]
  24. Kwon Y.J. Kwon O.I. Hwang H.J. Shin H.C. Yang S. Therapeutic effects of phlorotannins in the treatment of neurodegenerative disorders. Front. Mol. Neurosci. 2023 16 1193590 10.3389/fnmol.2023.1193590 37305552
    [Google Scholar]
  25. Talbot N.C. Luther P.M. Spillers N.J. Ragland A.R. Kidder E.J. Kelkar R.A. Varrassi G. Ahmadzadeh S. Shekoohi S. Kaye A.D. Neuroprotective potential of melatonin: Evaluating therapeutic efficacy in Alzheimer’s and Parkinson’s Diseases. Cureus 2023 15 12 e50948 10.7759/cureus.50948 38259379
    [Google Scholar]
  26. Dhanabalan A.K. Kumar P. Vasudevan S. Chworos A. Velmurugan D. Identification of a novel drug molecule for neurodegenerative disease from marine algae through in-silico analysis. J. Biomol. Struct. Dyn. 2024 1 1 10 10.1080/07391102.2024.2322624 38456260
    [Google Scholar]
  27. Catanesi M. Caioni G. Castelli V. Benedetti E. d’Angelo M. Cimini A. Benefits under the sea: The role of marine compounds in neurodegenerative disorders. Mar. Drugs 2021 19 1 24 10.3390/md19010024 33430021
    [Google Scholar]
  28. Choi JS. Fucosterol from an Edible Brown Alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Mar. Drugs 2008 5 6 78 10.3390/md16100368
    [Google Scholar]
  29. Khare E. Fatima Z. Recent advances and current perspectives in treatment of Alzheimer’s disease. Environ. Conserv. J. 2020 21 1&2 183 186 10.36953/ECJ.2020.211224
    [Google Scholar]
  30. Zhang L.J. Zhang H.Z. Liu Y.W. Tang M. Jiang Y.J. Li F.N. Guan L.P. Jin Q.H. Sulphated Fucooligosaccharide from Sargassum Horneri: Structural analysis and anti-alzheimer activity. Neurochem. Res. 2024 49 6 1592 1602 10.1007/s11064‑024‑04107‑x 38305960
    [Google Scholar]
  31. Paul S. Dey M. Roy B. Dhara B. Mitra A.K. Potentiality of marine microbial metabolites in the remedy of Alzheimer’s Disease: A comprehensive review. Proc. Zool. Soc. 2024 77 3 293 303 10.1007/s12595‑024‑00542‑4
    [Google Scholar]
  32. Adem M.A. Decourt B. Sabbagh M.N. Pharmacological approaches using diabetic drugs repurposed for Alzheimer’s Disease. Biomedicines 2024 12 1 99 10.3390/biomedicines12010099 38255204
    [Google Scholar]
  33. Dai Z. Hu T. Wei J. Wang X. Cai C. Gu Y. Hu Y. Wang W. Wu Q. Fang J. Network-based identification and mechanism exploration of active ingredients against Alzheimer’s disease via targeting endoplasmic reticulum stress from Traditional Chinese Medicine. Comput. Struct. Biotechnol. J. 2024 23 23 506 519 10.1016/j.csbj.2023.12.017 38261917
    [Google Scholar]
  34. Lee J. Jun M. Dual BACE1 and cholinesterase inhibitory effects of phlorotannins from Ecklonia cava—An in vitro and in silico study. Mar. Drugs 2019 17 2 91 10.3390/md17020091 30717208
    [Google Scholar]
  35. Kabir M.T. Uddin M.S. Jeandet P. Emran T.B. Mitra S. Albadrani G.M. Sayed A.A. Abdel-Daim M.M. Simal-Gandara J. Anti-alzheimer’s molecules derived from marine life: Understanding molecular mechanisms and therapeutic potential. Mar. Drugs 2021 19 5 251 10.3390/md19050251 33925063
    [Google Scholar]
  36. Anand R. Gill K.D. Mahdi A.A. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 2014 76 Pt A 27 50 10.1016/j.neuropharm.2013.07.004 23891641
    [Google Scholar]
  37. Noori T. Dehpour A.R. Sureda A. Sobarzo-Sanchez E. Shirooie S. Role of natural products for the treatment of Alzheimer’s disease. Eur. J. Pharmacol. 2021 898 173974 10.1016/j.ejphar.2021.173974 33652057
    [Google Scholar]
  38. Lee JY Wong CY Koh RY Lim CL Kok YY Chye SM Natural bioactive compounds from macroalgae and microalgae for the treatment of Alzheimer's Disease: A review. Yale J Biol Med. 2024 97 2 205 224 10.59249/JNKB9714
    [Google Scholar]
  39. Defant A. Carloni G. Innocenti N. Trobec T. Frangež R. Sepčić K. Mancini I. Structural insights into the marine alkaloid Discorhabdin G as a scaffold towards new acetylcholinesterase inhibitors. Mar. Drugs 2024 22 4 173 10.3390/md22040173 38667790
    [Google Scholar]
  40. Smyrska-Wieleba N. Mroczek T. Natural inhibitors of cholinesterases: Chemistry, structure–activity and methods of their analysis. Int. J. Mol. Sci. 2023 24 3 2722 10.3390/ijms24032722 36769043
    [Google Scholar]
  41. Moodie L.W.K. Sepčić K. Turk T. Frangež R. Svenson J. Svenson J. Natural cholinesterase inhibitors from marine organisms. Nat. Prod. Rep. 2019 36 8 1053 1092 10.1039/C9NP00010K 30924818
    [Google Scholar]
  42. Jung H.A. Ali M.Y. Choi R.J. Jeong H.O. Chung H.Y. Choi J.S. Kinetics and molecular docking studies of fucosterol and fucoxanthin, BACE1 inhibitors from brown algae Undaria pinnatifida and Ecklonia stolonifera. Food Chem. Toxicol. 2016 89 104 111 10.1016/j.fct.2016.01.014 26825629
    [Google Scholar]
  43. Ehrenberg A.J. Khatun A. Coomans E. Betts M.J. Capraro F. Thijssen E.H. Senkevich K. Bharucha T. Jafarpour M. Young P.N.E. Jagust W. Carter S.F. Lashley T. Grinberg L.T. Pereira J.B. Mattsson-Carlgren N. Ashton N.J. Hanrieder J. Zetterberg H. Schöll M. Paterson R.W. Relevance of biomarkers across different neurodegenerative diseases. Alzheimers Res. Ther. 2020 12 1 56 10.1186/s13195‑020‑00601‑w 32404143
    [Google Scholar]
  44. Alghazwi M. Smid S. Musgrave I. Zhang W. In vitro studies of the neuroprotective activities of astaxanthin and fucoxanthin against amyloid beta (Aβ1-42) toxicity and aggregation. Neurochem. Int. 2019 124 215 224 10.1016/j.neuint.2019.01.010 30639263
    [Google Scholar]
  45. Rahman S.O. Panda B.P. Parvez S. Kaundal M. Hussain S. Akhtar M. Najmi A.K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharmacother. 2019 110 47 58 10.1016/j.biopha.2018.11.043 30463045
    [Google Scholar]
  46. Yang L D. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer’s Disease in APP/PS1 double-transgenic mice. J Agric Food Chem. 2018 66 19 4948 57
    [Google Scholar]
  47. Chen M.H. Wang T.J. Chen L.J. Jiang M.Y. Wang Y.J. Tseng G.F. Chen J.R. The effects of astaxanthin treatment on a rat model of Alzheimer’s disease. Brain Res. Bull. 2021 172 151 163 10.1016/j.brainresbull.2021.04.020 33932491
    [Google Scholar]
  48. Huang C. Wen C. Yang M. Li A. Fan C. Gan D. Li Q. Zhao J. Zhu L. Lu D. Astaxanthin improved the cognitive deficits in APP/PS1 transgenic mice via selective activation of mTOR. J. Neuroimmune Pharmacol. 2021 16 3 609 619 10.1007/s11481‑020‑09953‑4 32944864
    [Google Scholar]
  49. Ribeiro J. Araújo-Silva H. Fernandes M. da Silva J.A. Pinto F.C.L. Pessoa O.D.L. Santos H.S. de Menezes J.E.S.A. Gomes A.C. Petrosamine isolated from marine sponge Petrosia sp. demonstrates protection against neurotoxicity in vitro and in vivo. Nat. Prod. Bioprospect. 2024 14 1 16 10.1007/s13659‑024‑00439‑x 38383833
    [Google Scholar]
  50. Park S-R. Kim Y.H. Yang S.Y. Enzyme kinetics and molecular docking investigation of acetylcholinesterase and butyrylcholinesterase inhibitors from the marine Alga Ecklonia cava. Nat. Prod. Sci. 2023 29 3 182 192 10.20307/nps.2023.29.3.182
    [Google Scholar]
  51. Kowal N.M. Di X. Omarsdottir S. Olafsdottir E.S. Flustramine Q, a novel marine origin acetylcholinesterase inhibitor from Flustra foliacea. Future Pharmacology 2023 3 1 38 47 10.3390/futurepharmacol3010003
    [Google Scholar]
  52. Moriou C. Lacroix D. Petek S. El-Demerdash A. Trepos R. Leu T.M. Florean C. Diederich M. Hellio C. Debitus C. Al-Mourabit A. Bioactive bromotyrosine derivatives from the pacific marine sponge suberea clavata (Pulitzer-Finali, 1982). Mar. Drugs 2021 19 3 143 10.3390/md19030143 33800819
    [Google Scholar]
  53. Gonçalves K.G. da Silva L.L. Soares A.R. Romeiro N.C. Acetylcholinesterase as a target of halogenated marine natural products from Laurencia dendroidea. Algal Res. 2020 52 102130 10.1016/j.algal.2020.102130
    [Google Scholar]
  54. Grina F. Ullah Z. Kaplaner E. Moujahid A. Eddoha R. Nasser B. Terzioğlu P. Yilmaz M.A. Ertaş A. Öztürk M. Essamadi A. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical fingerprints of five Moroccan seaweeds. S. Afr. J. Bot. 2020 128 152 160 10.1016/j.sajb.2019.10.021
    [Google Scholar]
  55. Pan H. Zhang J. Wang Y. Cui K. Cao Y. Wang L. Wu Y. Linarin improves the dyskinesia recovery in Alzheimer’s disease zebrafish by inhibiting the acetylcholinesterase activity. Life Sci. 2019 222 1 112 116 10.1016/j.lfs.2019.02.046 30802512
    [Google Scholar]
  56. Uysal S. Novel in vitro and in silico insights of the multi-biological activities and chemical composition of Bidens tripartita L. Food Chem. Toxicol. 2018 111 1 525 536
    [Google Scholar]
  57. Wang I. Jaiswal Y. Williams L. Marine algae as a source of prevention and relief in those with depression and dementia. World J. Pharm. Pharm. Sci. 2017 6 8 26 38
    [Google Scholar]
  58. Yang C.L. Wang Y.S. Liu C.L. Zeng Y.J. Cheng P. Jiao R.H. Bao S.X. Huang H.Q. Tan R.X. Ge H.M. Strepchazolins A and B: Two new alkaloids from a marine Streptomyces chartreusis NA02069. Mar. Drugs 2017 15 8 244 10.3390/md15080244 28767052
    [Google Scholar]
  59. Loaëc N. Attanasio E. Villiers B. Durieu E. Tahtouh T. Cam M. Davis R. Alencar A. Roué M. Bourguet-Kondracki M.L. Proksch P. Limanton E. Guiheneuf S. Carreaux F. Bazureau J.P. Klautau M. Meijer L. Marine-derived 2-aminoimidazolone alkaloids. Leucettamine b-related polyandrocarpamines inhibit mammalian and protozoan DYRK & CLK kinases. Mar. Drugs 2017 15 10 316 10.3390/md15100316 29039762
    [Google Scholar]
  60. Botić T. Defant A. Zanini P. Žužek M.C. Frangež R. Janussen D. Kersken D. Knez Ž. Mancini I. Sepčić K. Discorhabdin alkaloids from Antarctic Latrunculia spp. sponges as a new class of cholinesterase inhibitors. Eur. J. Med. Chem. 2017 136 136 294 304 10.1016/j.ejmech.2017.05.019 28505534
    [Google Scholar]
  61. Leirós M. Alonso E. Rateb M.E. Houssen W.E. Ebel R. Jaspars M. Alfonso A. Botana L.M. Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology 2015 93 285 293 10.1016/j.neuropharm.2015.02.015 25724081
    [Google Scholar]
  62. Wu B. Ohlendorf B. Oesker V. Wiese J. Malien S. Schmaljohann R. Imhoff J.F. Acetylcholinesterase inhibitors from a marine fungus Talaromyces sp. strain LF458. Mar. Biotechnol. (NY) 2015 17 1 110 119 10.1007/s10126‑014‑9599‑3 25108548
    [Google Scholar]
  63. Shourav J.S. Acetyl and butyryl cholinesterase inhibitory activities of the edible brown algae Eisenia bicyclis. Arch. Pharm. Res. 2015 38 8 1477 1487 10.1007/s12272‑014‑0515‑1 25370610
    [Google Scholar]
  64. Van Minh C. Van Kiem P. Hai Dang N. Marine natural products & their potential application in the future. ASEAN Journal on Science and Technology for Development 2017 22 4 297 311 10.29037/ajstd.167
    [Google Scholar]
  65. Haefner B. Drugs from the deep: marine natural products as drug candidates. Drug Discov. Today 2003 8 12 536 544 10.1016/S1359‑6446(03)02713‑2 12821301
    [Google Scholar]
  66. Potyk D. Treatments for Alzheimer disease. South. Med. J. 2005 98 6 628 635 10.1097/01.SMJ.0000166671.86815.C1 16004170
    [Google Scholar]
  67. Kang S.M. Cha S.H. Ko J.Y. Kang M.C. Kim D. Heo S.J. Kim J.S. Heu M.S. Kim Y.T. Jung W.K. Jeon Y.J. Neuroprotective effects of phlorotannins isolated from a brown alga, Ecklonia cava, against H2O2-induced oxidative stress in murine hippocampal HT22 cells. Environ. Toxicol. Pharmacol. 2012 34 1 96 105 10.1016/j.etap.2012.03.006 22465981
    [Google Scholar]
  68. Yoon N.Y. Chung H.Y. Kim H.R. Choi J.S. Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish. Sci. 2008 74 1 200 207 10.1111/j.1444‑2906.2007.01511.x
    [Google Scholar]
  69. Nelson T.J. Bryostatin Effects on Cognitive Function and PKCɛ in Alzheimer’s Disease Phase IIa and Expanded Access Trials. 2017 1 521 535
    [Google Scholar]
  70. Manzano S. Agüera L. Aguilar M. Olazarán J. A Review on Tramiprosate (Homotaurine) in Alzheimer’s disease and other neurocognitive disorders. Front. Neurol. 2020 11 614 10.3389/fneur.2020.00614 32733362
    [Google Scholar]
  71. Aisen P.S. Gauthier S. Ferris S.H. Saumier D. Haine D. Garceau D. Duong A. Suhy J. Oh J. Lau W.C. Sampalis J. Tramiprosate in mild-to-moderate Alzheimer’s disease – a randomized, double-blind, placebo-controlled, multi-centre study (the Alphase Study). Arch. Med. Sci. 2011 1 1 102 111 10.5114/aoms.2011.20612 22291741
    [Google Scholar]
  72. Hooijmans C.R. Rutters F. Dederen P.J. Gambarota G. Veltien A. van Groen T. Broersen L.M. Lütjohann D. Heerschap A. Tanila H. Kiliaan A.J. Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD). Neurobiol. Dis. 2007 28 1 16 29 10.1016/j.nbd.2007.06.007 17720508
    [Google Scholar]
  73. Yassine H.N. Braskie M.N. Mack W.J. Castor K.J. Fonteh A.N. Schneider L.S. Harrington M.G. Chui H.C. Association of docosahexaenoic acid supplementation with alzheimer disease stage in apolipoprotein E epsilon4 carriers: A review. JAMA Neurol. 2017 74 3 339 347 10.1001/jamaneurol.2016.4899 28114437
    [Google Scholar]
  74. Arellanes I.C. Choe N. Solomon V. He X. Kavin B. Martinez A.E. Kono N. Buennagel D.P. Hazra N. Kim G. D’Orazio L.M. McCleary C. Sagare A. Zlokovic B.V. Hodis H.N. Mack W.J. Chui H.C. Harrington M.G. Braskie M.N. Schneider L.S. Yassine H.N. Brain delivery of supplemental docosahexaenoic acid (DHA): A randomized placebo-controlled clinical trial. EBioMedicine 2020 59 102883 10.1016/j.ebiom.2020.102883 32690472
    [Google Scholar]
  75. Saputri L.O. Harahap H.S. Rivarti A.W. Zubaidi F.F. Prospecting marine natural products as the disease-modifying treatment of Alzheimer’s Diseases. Biol. Med. Natural Prod. Chem 2024 13 2 433 441
    [Google Scholar]
/content/journals/cpsp/10.2174/0122115560329324241203113505
Loading
/content/journals/cpsp/10.2174/0122115560329324241203113505
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test