Skip to content
2000
image of Correlation between Cognitive Impairment and Peripheral Biomarkers - Significance of Phosphorylated Tau and Amyloid-β in Alzheimer’s Disease: A New Insight

Abstract

The correlation between elevated levels of amyloid-β and phosphorylated tau (p-tau) protein and AD is widely recognized. A rise in pTau and amyloid-β levels aids in separating AD from other neurodegenerative conditions. In this study, we have assessed the correlation between cognitive impairment and peripheral biomarkers, tau and amyloid-β levels, in AD patients with mild Alzheimer's disease in order to develop protein-based markers in a more useful way. An enzyme-linked immunosorbent assay has been used to determine the levels of tau and p-tau in the serum of the different groups and it has revealed their levels to be noticeably greater in AD compared to mild AD and even higher compared to elderly controls. Based on the cutoff levels for tau, p-tau, and amyloid-β in patients with AD and mild AD, having high sensitivity and specificity, which have been described in numerous studies by respective International Research Groups (with the greatest number of pieces of available evidence), the plasma concentration of these proteins can be used as a diagnostic indicator for AD and mild AD. These levels may also offer a practical guide to their implementation in the clinical routine.

Loading

Article metrics loading...

/content/journals/cprr/10.2174/0126660822329981241007105405
2024-10-16
2024-11-21
Loading full text...

Full text loading...

References

  1. Hampel H. Blennow K. Shaw L.M. Hoessler Y.C. Zetterberg H. Trojanowski J.Q. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol. 2010 45 1 30 40 10.1016/j.exger.2009.10.010 19853650
    [Google Scholar]
  2. Andreasen N. Minthon L. Clarberg A. Davidsson P. Gottfries J. Vanmechelen E. Vanderstichele H. Winblad B. Blennow K. Sensitivity, specificity, and stability of CSF-tau in AD in a community-based patient sample. Neurology 1999 53 7 1488 1494 10.1212/WNL.53.7.1488 10534256
    [Google Scholar]
  3. Gómez-Tortosa E. Gonzalo I. Fanjul S. Sainz M.J. Cantarero S. Cemillán C. Yébenes J.G. del Ser T. Cerebrospinal fluid markers in dementia with lewy bodies compared with Alzheimer disease. Arch. Neurol. 2003 60 9 1218 1222 10.1001/archneur.60.9.1218 12975286
    [Google Scholar]
  4. Hampel H. Bürger K. Pruessner J.C. Zinkowski R. DeBernardis J. Kerkman D. Leinsinger G. Evans A.C. Davies P. Möller H.J. Teipel S.J. Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Arch. Neurol. 2005 62 5 770 773 10.1001/archneur.62.5.770 15883264
    [Google Scholar]
  5. Nägga K. Gottfries J. Blennow K. Marcusson J. Cerebrospinal fluid phospho-tau, total tau and β-amyloid(1-42) in the differentiation between Alzheimer’s disease and vascular dementia. Dement. Geriatr. Cogn. Disord. 2002 14 4 183 190 10.1159/000066023 12411760
    [Google Scholar]
  6. Schneider P. Hampel H. Buerger K. Biological marker candidates of Alzheimer’s disease in blood, plasma, and serum. CNS Neurosci. Ther. 2009 15 4 358 374 10.1111/j.1755‑5949.2009.00104.x 19840034
    [Google Scholar]
  7. Schoonenboom N.S.M. Pijnenburg Y.A.L. Mulder C. Rosso S.M. Van Elk E.J. Van Kamp G.J. Van Swieten J.C. Scheltens P. Amyloid β(1–42) and phosphorylated tau in CSF as markers for early-onset Alzheimer disease. Neurology 2004 62 9 1580 1584 10.1212/01.WNL.0000123249.58898.E0 15136685
    [Google Scholar]
  8. Shaw L.M. Korecka M. Clark C.M. Lee V.M.Y. Trojanowski J.Q. Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nat. Rev. Drug Discov. 2007 6 4 295 303 10.1038/nrd2176 17347655
    [Google Scholar]
  9. Shaw L.M. Vanderstichele H. Knapik-Czajka M. Clark C.M. Aisen P.S. Petersen R.C. Blennow K. Soares H. Simon A. Lewczuk P. Dean R. Siemers E. Potter W. Lee V.M.Y. Trojanowski J.Q. Alzheimer’s Disease Neuroimaging Initiative Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann. Neurol. 2009 65 4 403 413 10.1002/ana.21610 19296504
    [Google Scholar]
  10. Villa C. Lavitrano M. Salvatore E. Combi R. Molecular and imaging biomarkers in Alzheimer’s disease: A focus on recent insights. J. Pers. Med. 2020 10 3 61 10.3390/jpm10030061 32664352
    [Google Scholar]
  11. Bateman R.J. Xiong C. Benzinger T.L.S. Fagan A.M. Goate A. Fox N.C. Marcus D.S. Cairns N.J. Xie X. Blazey T.M. Holtzman D.M. Santacruz A. Buckles V. Oliver A. Moulder K. Aisen P.S. Ghetti B. Klunk W.E. McDade E. Martins R.N. Masters C.L. Mayeux R. Ringman J.M. Rossor M.N. Schofield P.R. Sperling R.A. Salloway S. Morris J.C. Dominantly Inherited Alzheimer Network Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N. Engl. J. Med. 2012 367 9 795 804 10.1056/NEJMoa1202753 22784036
    [Google Scholar]
  12. Weintraub S. Wicklund A.H. Salmon D.P. The neuropsychological profile of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012 2 4 a006171 10.1101/cshperspect.a006171 22474609
    [Google Scholar]
  13. Williams D.R. de Silva R. Paviour D.C. Pittman A. Watt H.C. Kilford L. Holton J.L. Revesz T. Lees A.J. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 2005 128 6 1247 1258 10.1093/brain/awh488 15788542
    [Google Scholar]
  14. Outeiro T.F. Koss D.J. Erskine D. Walker L. Kurzawa-Akanbi M. Burn D. Donaghy P. Morris C. Taylor J.P. Thomas A. Attems J. McKeith I. Dementia with Lewy bodies: An update and outlook. Mol. Neurodegener. 2019 14 1 5 10.1186/s13024‑019‑0306‑8 30665447
    [Google Scholar]
  15. Slattery C.F. Crutch S.J. Schott J.M. Phenotypical variation in Alzheimer’s disease: Insights from posterior cortical atrophy. Pract. Neurol. 2015 15 1 2 4 10.1136/practneurol‑2014‑000955 25239627
    [Google Scholar]
  16. Vermunt L. Sikkes S.A.M. van den Hout A. Handels R. Bos I. van der Flier W.M. Kern S. Ousset P.J. Maruff P. Skoog I. Verhey F.R.J. Freund-Levi Y. Tsolaki M. Wallin Å.K. Olde Rikkert M. Soininen H. Spiru L. Zetterberg H. Blennow K. Scheltens P. Muniz-Terrera G. Visser P.J. Alzheimer Disease Neuroimaging Initiative AIBL Research Group ICTUS/DSA study groups Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. Alzheimers Dement. 2019 15 7 888 898 10.1016/j.jalz.2019.04.001 31164314
    [Google Scholar]
  17. Ausó E. Gómez-Vicente V. Esquiva G. Biomarkers for Alzheimer’s disease early diagnosis. J. Pers. Med. 2020 10 3 114 10.3390/jpm10030114 32899797
    [Google Scholar]
  18. Sheikh-Bahaei N. Sajjadi S.A. Manavaki R. Gillard J.H. Imaging biomarkers in Alzheimer’s disease: A practical guide for clinicians. J. Alzheimers Dis. Rep. 2017 1 1 71 88 10.3233/ADR‑170013 30480230
    [Google Scholar]
  19. McGrowder D.A. Miller F. Vaz K. Nwokocha C. Wilson-Clarke C. Anderson-Cross M. Brown J. Anderson-Jackson L. Williams L. Latore L. Thompson R. Alexander-Lindo R. Cerebrospinal fluid biomarkers of Alzheimer’s disease: Current evidence and future perspectives. Brain Sci. 2021 11 2 215 10.3390/brainsci11020215 33578866
    [Google Scholar]
  20. Teunissen C.E. Verberk I.M.W. Thijssen E.H. Vermunt L. Hansson O. Zetterberg H. van der Flier W.M. Mielke M.M. del Campo M. Blood-based biomarkers for Alzheimer’s disease: Towards clinical implementation. Lancet Neurol. 2022 21 1 66 77 10.1016/S1474‑4422(21)00361‑6 34838239
    [Google Scholar]
  21. Sjögren M. Minthon L. Davidsson P. Granérus A-K. Clarberg A. Vanderstichele H. Vanmechelen E. Wallin A. Blennow K. CSF levels of tau, β-amyloid 1-42 and GAP-43 in frontotemporal dementia, other types of dementia and normal aging. J. Neural Transm. 2000 107 5 563 579 10.1007/s007020070079 11072752
    [Google Scholar]
  22. Welge V. Fiege O. Lewczuk P. Mollenhauer B. Esselmann H. Klafki H.W. Wolf S. Trenkwalder C. Otto M. Kornhuber J. Wiltfang J. Bibl M. Combined CSF tau, p-tau181 and amyloid-β 38/40/42 for diagnosing Alzheimer’s disease. J. Neural Transm. 2009 116 2 203 212 10.1007/s00702‑008‑0177‑6 19142572
    [Google Scholar]
  23. Vemuri P. Wiste H.J. Weigand S.D. Shaw L.M. Trojanowski J.Q. Weiner M.W. Knopman D.S. Petersen R.C. Jack C.R. Jr Alzheimer’s Disease Neuroimaging Initiative MRI and CSF biomarkers in normal, MCI, and AD subjects. Neurology 2009 73 4 287 293 10.1212/WNL.0b013e3181af79e5 19636048
    [Google Scholar]
  24. Shekhar S. Kumar R. Rai N. Kumar V. Singh K. Upadhyay A.D. Tripathi M. Dwivedi S. Dey A.B. Dey S. Estimation of tau and phosphorylated tau181 in serum of Alzheimer’s disease and mild cognitive impairment patients. PLoS One 2016 11 7 e0159099 10.1371/journal.pone.0159099 27459603
    [Google Scholar]
  25. Blennow K. Hampel H. Weiner M. Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 2010 6 3 131 144 10.1038/nrneurol.2010.4 20157306
    [Google Scholar]
  26. Tapiola T. Alafuzoff I. Herukka S.K. Parkkinen L. Hartikainen P. Soininen H. Pirttilä T. Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch. Neurol. 2009 66 3 382 389 10.1001/archneurol.2008.596 19273758
    [Google Scholar]
  27. Irizarry M.C. Biomarkers of Alzheimer disease in plasma. NeuroRx 2004 1 2 226 234 10.1602/neurorx.1.2.226 15717023
    [Google Scholar]
  28. Medeiros R. Baglietto-Vargas D. LaFerla F.M. The role of tau in Alzheimer’s disease and related disorders. CNS Neurosci. Ther. 2011 17 5 514 524 10.1111/j.1755‑5949.2010.00177.x 20553310
    [Google Scholar]
  29. Gao Y. Tan L. Yu J.T. Tan L. Tau in Alzheimer’s disease: Mechanisms and therapeutic strategies. Curr. Alzheimer Res. 2018 15 3 283 300 10.2174/1567205014666170417111859 28413986
    [Google Scholar]
  30. Yoshiyama Y. Lee V.M.Y. Trojanowski J.Q. Therapeutic strategies for tau mediated neurodegeneration. J. Neurol. Neurosurg. Psychiatry 2013 84 7 784 795 10.1136/jnnp‑2012‑303144 23085937
    [Google Scholar]
  31. Liu H. Wang L. Su W. Xie X.Q. Advances in recent patent and clinical trial drug development for Alzheimer’s disease. Pharm. Pat. Anal. 2014 3 4 429 447 10.4155/ppa.14.22 25291315
    [Google Scholar]
  32. Iqbal K. Liu F. Gong C.X. Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 2010 7 8 656 664 10.2174/156720510793611592 20678074
    [Google Scholar]
  33. Quintanilla R.A. Orellana D.I. González-Billault C. Maccioni R.B. Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway. Exp. Cell Res. 2004 295 1 245 257 10.1016/j.yexcr.2004.01.002 15051507
    [Google Scholar]
  34. Noble W. Olm V. Takata K. Casey E. Mary O. Meyerson J. Gaynor K. LaFrancois J. Wang L. Kondo T. Davies P. Burns M. Veeranna Nixon R. Dickson D. Matsuoka Y. Ahlijanian M. Lau L.F. Duff K. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron 2003 38 4 555 565 10.1016/S0896‑6273(03)00259‑9 12765608
    [Google Scholar]
  35. Andreasen N. Minthon L. Davidsson P. Vanmechelen E. Vanderstichele H. Winblad B. Blennow K. Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch. Neurol. 2001 58 3 373 379 10.1001/archneur.58.3.373 11255440
    [Google Scholar]
  36. Buerger K. Frisoni G. Uspenskaya O. Ewers M. Zetterberg H. Geroldi C. Binetti G. Johannsen P. Rossini P.M. Wahlund L.O. Vellas B. Blennow K. Hampel H. Validation of Alzheimer’s disease CSF and plasma biological markers: The multicentre reliability study of the pilot European Alzheimer’s Disease Neuroimaging Initiative (E-ADNI). Exp. Gerontol. 2009 44 9 579 585 10.1016/j.exger.2009.06.003 19539742
    [Google Scholar]
  37. Ewers M. Mielke M.M. Hampel H. Blood-based biomarkers of microvascular pathology in Alzheimer’s disease. Exp. Gerontol. 2010 45 1 75 79 10.1016/j.exger.2009.09.005 19782124
    [Google Scholar]
  38. Frank R.A. Galasko D. Hampel H. Hardy J. de Leon M.J. Mehta P.D. Rogers J. Siemers E. Trojanowski J.Q. National Institute on Aging Biological Markers Working Group Biological markers for therapeutic trials in Alzheimer’s disease. Neurobiol. Aging 2003 24 4 521 536 10.1016/S0197‑4580(03)00002‑2 12714109
    [Google Scholar]
  39. Hampel H. Hardy J. Blennow K. Chen C. Perry G. Kim S.H. Villemagne V.L. Aisen P. Vendruscolo M. Iwatsubo T. Masters C.L. Cho M. Lannfelt L. Cummings J.L. Vergallo A. Vendruscolo, Iwatsubo T, Masters CL. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  40. Kummer M.P. Heneka M.T. Truncated and modified amyloid-beta species. Alzheimers Res. Ther. 2014 6 3 28 10.1186/alzrt258 25031638
    [Google Scholar]
  41. Tosi G. Pederzoli F. Belletti D. Vandelli M.A. Forni F. Duskey J.T. Ruozi B. Nanomedicine in Alzheimer’s disease: Amyloid beta targeting strategy. Prog. Brain Res. 2019 245 57 88 10.1016/bs.pbr.2019.03.001 30961872
    [Google Scholar]
  42. Hampel H. Teipel S.J. Fuchsberger T. Andreasen N. Wiltfang J. Otto M. Shen Y. Dodel R. Du Y. Farlow M. Möller H-J. Blennow K. Buerger K. Value of CSF β-amyloid1–42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol. Psychiatry 2004 9 7 705 710 10.1038/sj.mp.4001473 14699432
    [Google Scholar]
  43. Hampel H. Broich K. Hoessler Y. Pantel J. Biological markers for early detection and pharmacological treatment of Alzheimer’s disease. Dialogues Clin. Neurosci. 2022 10.31887/DCNS.2009.11.2/hhampel 19585950
    [Google Scholar]
  44. Hampel H. Shen Y. Walsh D.M. Aisen P. Shaw L.M. Zetterberg H. Trojanowski J.Q. Blennow K. Biological markers of amyloid β-related mechanisms in Alzheimer’s disease. Exp. Neurol. 2010 223 2 334 346 10.1016/j.expneurol.2009.09.024 19815015
    [Google Scholar]
  45. Pyun J.M. Youn Y.C. Park Y.H. Kim S. Integration of amyloid-β oligomerization tendency as a plasma biomarker in Alzheimer’s disease diagnosis. Front. Neurol. 2023 13 1028448 10.3389/fneur.2022.1028448 36733444
    [Google Scholar]
  46. Chen Y. Yu Y. Tau and neuroinflammation in Alzheimer’s disease: Interplay mechanisms and clinical translation. J. Neuroinflammation 2023 20 1 165 10.1186/s12974‑023‑02853‑3 37452321
    [Google Scholar]
  47. Hammond T.C. Xing X. Wang C. Ma D. Nho K. Crane P.K. Elahi F. Ziegler D.A. Liang G. Cheng Q. Yanckello L.M. Jacobs N. Lin A.L. β-amyloid and tau drive early Alzheimer’s disease decline while glucose hypometabolism drives late decline. Commun. Biol. 2020 3 1 352 10.1038/s42003‑020‑1079‑x 32632135
    [Google Scholar]
  48. Zhang W. Xiao D. Mao Q. Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct. Target. Ther. 2023 8 1 267 10.1038/s41392‑023‑01486‑5 37433768
    [Google Scholar]
  49. d’Errico P. Meyer-Luehmann M. Mechanisms of pathogenic tau and Aβ protein spreading in Alzheimer’s disease. Front. Aging Neurosci. 2020 12 265 10.3389/fnagi.2020.00265 33061903
    [Google Scholar]
  50. Klyucherev T.O. Olszewski P. Shalimova A.A. Chubarev V.N. Tarasov V.V. Attwood M.M. Syvänen S. Schiöth H.B. Advances in the development of new biomarkers for Alzheimer’s disease. Transl. Neurodegener. 2022 11 1 25 10.1186/s40035‑022‑00296‑z 35449079
    [Google Scholar]
  51. Tu S. Okamoto S. Lipton S.A. Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol. Neurodegener. 2014 9 1 48 10.1186/1750‑1326‑9‑48 25394486
    [Google Scholar]
  52. Alonso A.D. Cohen L.S. Corbo C. Morozova V. ElIdrissi A. Phillips G. Kleiman F.E. Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front. Cell. Neurosci. 2018 12 338 10.3389/fncel.2018.00338 30356756
    [Google Scholar]
  53. Kanaan N.M. Pigino G.F. Brady S.T. Lazarov O. Binder L.I. Morfini G.A. Axonal degeneration in Alzheimer’s disease: When signaling abnormalities meet the axonal transport system. Exp. Neurol. 2013 246 44 53 10.1016/j.expneurol.2012.06.003 22721767
    [Google Scholar]
  54. Zilka N. Filipcik P. Koson P. Fialova L. Skrabana R. Zilkova M. Rolkova G. Kontsekova E. Novak M. Truncated tau from sporadic Alzheimer’s disease suffices to drive neurofibrillary degeneration in vivo. FEBS Lett. 2006 580 15 3582 3588 10.1016/j.febslet.2006.05.029 16753151
    [Google Scholar]
  55. Robbins M. Clayton E. Kaminski Schierle G.S. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol. Commun. 2021 9 1 149 10.1186/s40478‑021‑01246‑y 34503576
    [Google Scholar]
  56. Cárdenas-Aguayo M.C. Gómez-Virgilio L. DeRosa S. Meraz-Ríos M.A. The role of tau oligomers in the onset of Alzheimer’s disease neuropathology. ACS Chem. Neurosci. 2014 5 12 1178 1191 10.1021/cn500148z 25268947
    [Google Scholar]
  57. Busche M.A. Hyman B.T. Synergy between amyloid-β and tau in Alzheimer’s disease. Nat. Neurosci. 2020 23 10 1183 1193 10.1038/s41593‑020‑0687‑6 32778792
    [Google Scholar]
  58. Jia J.P. Meng R. Sun Y.X. Sun W.J. Ji X.M. Jia L.F. Cerebrospinal fluid tau, Aβ1–42 and inflammatory cytokines in patients with Alzheimer’s disease and vascular dementia. Neurosci. Lett. 2005 383 1-2 12 16 10.1016/j.neulet.2005.03.051 15936505
    [Google Scholar]
  59. Lewczuk P. Esselmann H. Otto M. Maler J.M. Henkel A.W. Henkel M.K. Eikenberg O. Antz C. Krause W.R. Reulbach U. Kornhuber J. Wiltfang J. Neurochemical diagnosis of Alzheimer’s dementia by CSF Aβ42, Aβ42/Aβ40 ratio and total tau. Neurobiol. Aging 2004 25 3 273 281 10.1016/S0197‑4580(03)00086‑1 15123331
    [Google Scholar]
  60. Shoji M. Matsubara E. Kanai M. Watanabe M. Nakamura T. Tomidokoro Y. Shizuka M. Wakabayashi K. Igeta Y. Ikeda Y. Mizushima K. Amari M. Ishiguro K. Kawarabayashi T. Harigaya Y. Okamoto K. Hirai S. Combination assay of CSF Tau, Aβ1-40 and Aβ1-42(43) as a biochemical marker of Alzheimer’s disease. J. Neurol. Sci. 1998 158 2 134 140 10.1016/S0022‑510X(98)00122‑1 9702683
    [Google Scholar]
  61. Ashique S. Sirohi E. Kumar S. Rihan M. Mishra N. Bhatt S. Gautam R.K. Singh S.K. Gupta G. Chellappan D.K. Dua K. Aducanumab in Alzheimer’s disease: A critical update. Curr. Med. Chem. 2023 10.2174/0929867331666230727103553 37497712
    [Google Scholar]
  62. Sunderland T. Linker G. Mirza N. Putnam K.T. Friedman D.L. Kimmel L.H. Bergeson J. Manetti G.J. Zimmermann M. Tang B. Bartko J.J. Cohen R.M. Decreased β-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 2003 289 16 2094 2103 10.1001/jama.289.16.2094 12709467
    [Google Scholar]
  63. Dickson D.W. Crystal H.A. Bevona C. Honer W. Vincent I. Davies P. Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol. Aging 1995 16 3 285 298 10.1016/0197‑4580(95)00013‑5 7566338
    [Google Scholar]
  64. Himmler A. Drechsel D. Kirschner M.W. Martin D.W. Jr Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol. Cell. Biol. 1989 9 4 1381 1388 10.1128/mcb.9.4.1381‑1388.1989 2498649
    [Google Scholar]
  65. Andreadis A. Tau gene alternative splicing: Expression patterns, regulation and modulation of function in normal brain and neurodegenerative diseases. Biochim. Biophys. Acta Mol. Basis Dis. 2005 1739 2-3 91 103 10.1016/j.bbadis.2004.08.010 15615629
    [Google Scholar]
  66. Hong M. Zhukareva V. Vogelsberg-Ragaglia V. Wszolek Z. Reed L. Miller B.I. Geschwind D.H. Bird T.D. McKeel D. Goate A. Morris J.C. Wilhelmsen K.C. Schellenberg G.D. Trojanowski J.Q. Lee V.M. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 1998 282 5395 1914 1917 10.1126/science.282.5395.1914 9836646
    [Google Scholar]
  67. Brion J.P. Octave J.N. Couck A.M. Distribution of the phosphorylated microtubule-associated protein tau in developing cortical neurons. Neuroscience 1994 63 3 895 909 10.1016/0306‑4522(94)90533‑9 7898684
    [Google Scholar]
  68. Hanger D.P. Gibb G.M. de Silva R. Boutajangout A. Brion J.P. Revesz T. Lees A.J. Anderton B.H. The complex relationship between soluble and insoluble tau in tauopathies revealed by efficient dephosphorylation and specific antibodies. FEBS Lett. 2002 531 3 538 542 10.1016/S0014‑5793(02)03611‑6 12435607
    [Google Scholar]
  69. Lathuilière A. Valdés P. Papin S. Cacquevel M. Maclachlan C. Knott G.W. Muhs A. Paganetti P. Schneider B.L. Motifs in the tau protein that control binding to microtubules and aggregation determine pathological effects. Sci. Rep. 2017 7 1 13556 10.1038/s41598‑017‑13786‑2 29051562
    [Google Scholar]
  70. Yen S.H. More thoughts on plaques and tangles. Neurobiol. Aging 1986 7 6 432 434 10.1016/0197‑4580(86)90056‑4 3561656
    [Google Scholar]
  71. Saman S. Kim W. Raya M. Visnick Y. Miro S. Saman S. Jackson B. McKee A.C. Alvarez V.E. Lee N.C.Y. Hall G.F. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated in cerebrospinal fluid in early Alzheimer disease. J. Biol. Chem. 2012 287 6 3842 3849 10.1074/jbc.M111.277061 22057275
    [Google Scholar]
  72. Fiandaca M.S. Kapogiannis D. Mapstone M. Boxer A. Eitan E. Schwartz J.B. Abner E.L. Petersen R.C. Federoff H.J. Miller B.L. Goetzl E.J. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case‐control study. Alzheimers Dement. 2015 11 6 600 7.e1 10.1016/j.jalz.2014.06.008 25130657
    [Google Scholar]
  73. Brandt R. Léger J. Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J. Cell Biol. 1995 131 5 1327 1340 10.1083/jcb.131.5.1327 8522593
    [Google Scholar]
  74. SantaCruz K. Lewis J. Spires T. Paulson J. Kotilinek L. Ingelsson M. Guimaraes A. DeTure M. Ramsden M. McGowan E. Forster C. Yue M. Orne J. Janus C. Mariash A. Kuskowski M. Hyman B. Hutton M. Ashe K.H. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005 309 5733 476 481 10.1126/science.1113694 16020737
    [Google Scholar]
  75. Martinez-Coria H. Green K.N. Billings L.M. Kitazawa M. Albrecht M. Rammes G. Parsons C.G. Gupta S. Banerjee P. LaFerla F.M. Memantine improves cognition and reduces Alzheimer’s-like neuropathology in transgenic mice. Am. J. Pathol. 2010 176 2 870 880 10.2353/ajpath.2010.090452 20042680
    [Google Scholar]
  76. Smith M.A. Siedlak S.L. Richey P.L. Mulvihill P. Ghiso J. Frangione B. Tagliavini F. Giaccone G. Bugiani O. Praprotnik D. Kalaria R.N. Perry G. Tau protein directly interacts with the amyloid β-protein precursor: Implications for Alzheimer’s disease. Nat. Med. 1995 1 4 365 369 10.1038/nm0495‑365 7585068
    [Google Scholar]
  77. Noble W. Planel E. Zehr C. Olm V. Meyerson J. Suleman F. Gaynor K. Wang L. LaFrancois J. Feinstein B. Burns M. Krishnamurthy P. Wen Y. Bhat R. Lewis J. Dickson D. Duff K. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc. Natl. Acad. Sci. USA 2005 102 19 6990 6995 10.1073/pnas.0500466102 15867159
    [Google Scholar]
  78. Zetterberg H. Wilson D. Andreasson U. Minthon L. Blennow K. Randall J. Hansson O. Plasma tau levels in Alzheimer’s disease. Alzheimers Res. Ther. 2013 5 2 9 10.1186/alzrt163 23551972
    [Google Scholar]
  79. Ganguli M. Ratcliff G. Chandra V. Sharma S. Gilby J. Pandav R. Belle S. Ryan C. Baker C. Seaberg E. Dekosky S. A hindi version of the MMSE: The development of a cognitive screening instrument for a largely illiterate rural elderly population in india. Int. J. Geriatr. Psychiatry 1995 10 5 367 377 10.1002/gps.930100505
    [Google Scholar]
  80. Brunden K.R. Trojanowski J.Q. Lee V.M.Y. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat. Rev. Drug Discov. 2009 8 10 783 793 10.1038/nrd2959 19794442
    [Google Scholar]
  81. Darst B. F. Koscik R. L. Racine A. M. Oh J. M. Krause R. A. Carlsson C. M. Zetterberg H. Blennow K. Christian B. T. Bendlin B. B. Okonkwo O. C. Hogan K. J. Hermann B. P. Sager M. A. Asthana S. Johnson S. C. Engelman C. D. Pathway-specific polygenic risk scores as predictors of amyloid-β deposition and cognitive function in a sample at increased risk for alzheimer's disease. J. Alzheimers Dis. 2017 55 2 473 484 10.3233/JAD‑160195
    [Google Scholar]
  82. Rembach A. Watt A.D. Wilson W.J. Villemagne V.L. Burnham S.C. Ellis K.A. Maruff P. Ames D. Rowe C.C. Macaulay S.L. Bush A.I. Martins R.N. Masters C.L. Doecke J.D. AIBL Research Group Plasma amyloid-β levels are significantly associated with a transition toward Alzheimer’s disease as measured by cognitive decline and change in neocortical amyloid burden. J. Alzheimers Dis. 2014 40 1 95 104 10.3233/JAD‑131802 24334723
    [Google Scholar]
  83. Butterfield D.A. Drake J. Pocernich C. Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: Central role for amyloid β-peptide. Trends Mol. Med. 2001 7 12 548 554 10.1016/S1471‑4914(01)02173‑6 11733217
    [Google Scholar]
  84. Zou K. Abdullah M. Michikawa M. Current biomarkers for alzheimer’s disease: From CSF to blood. J. Pers. Med. 2020 10 3 85 10.3390/jpm10030085 32806668
    [Google Scholar]
  85. Kim H.J. Lim T.S. Lee S.M. Kim T.S. Kim Y. An Y.S. Youn Y.C. Park S.A. Chang J. Moon S.Y. Cerebrospinal fluid levels of β-amyloid 40 and β-amyloid 42 are proportionately decreased in amyloid positron-emission tomography negative idiopathic normal-pressure hydrocephalus patients. J. Clin. Neurol. 2019 15 3 353 359 10.3988/jcn.2019.15.3.353 31286708
    [Google Scholar]
  86. Cullen N. Janelidze S. Palmqvist S. Stomrud E. Mattsson-Carlgren N. Hansson O. Alzheimer’s Disease Neuroimaging Initiative Association of CSF Aβ 38 levels with risk of alzheimer disease–related decline. Neurology 2022 98 9 e958 e967 10.1212/WNL.0000000000013228 34937781
    [Google Scholar]
  87. Habib A. Sawmiller D. Tan J. Restoring soluble amyloid precursor protein α functions as a potential treatment for >Alzheimer’s disease. J. Neurosci. Res. 2017 95 4 973 991 10.1002/jnr.23823 27531392
    [Google Scholar]
  88. Perneczky R. Guo L-H. Kagerbauer S.M. Werle L. Kurz A. Martin J. Alexopoulos P. Soluble amyloid precursor protein β as blood-based biomarker of Alzheimer’s disease. Transl. Psychiatry 2013 3 2 e227 10.1038/tp.2013.11 23423136
    [Google Scholar]
  89. Gonzalez-Ortiz F. Kac P.R. Brum W.S. Zetterberg H. Blennow K. Karikari T.K. Plasma phospho-tau in Alzheimer’s disease: Towards diagnostic and therapeutic trial applications. Mol. Neurodegener. 2023 18 1 18 10.1186/s13024‑023‑00605‑8 36927491
    [Google Scholar]
  90. Mielke M.M. Syrjanen J.A. Blennow K. Zetterberg H. Vemuri P. Skoog I. Machulda M.M. Kremers W.K. Knopman D.S. Jack C. Jr Petersen R.C. Kern S. Plasma and CSF neurofilament light. Neurology 2019 93 3 e252 e260 10.1212/WNL.0000000000007767 31182505
    [Google Scholar]
  91. Schmidt F.M. Mergl R. Stach B. Jahn I. Gertz H.J. Schönknecht P. Elevated levels of cerebrospinal fluid neuron-specific enolase (NSE) in Alzheimer’s disease. Neurosci. Lett. 2014 570 81 85 10.1016/j.neulet.2014.04.007 24746933
    [Google Scholar]
  92. Tarawneh R. D’Angelo G. Macy E. Xiong C. Carter D. Cairns N.J. Fagan A.M. Head D. Mintun M.A. Ladenson J.H. Lee J.M. Morris J.C. Holtzman D.M. Visinin‐like protein‐1: Diagnostic and prognostic biomarker in Alzheimer disease. Ann. Neurol. 2011 70 2 274 285 10.1002/ana.22448 21823155
    [Google Scholar]
  93. Olsson B. Hertze J. Ohlsson M. Nägga K. Höglund K. Basun H. Annas P. Lannfelt L. Andreasen N. Minthon L. Zetterberg H. Blennow K. Hansson O. Cerebrospinal fluid levels of heart fatty acid binding protein are elevated prodromally in Alzheimer’s disease and vascular dementia. J. Alzheimers Dis. 2013 34 3 673 679 10.3233/JAD‑121384 23254629
    [Google Scholar]
  94. Skillbäck T. Delsing L. Synnergren J. Mattsson N. Janelidze S. Nägga K. Kilander L. Hicks R. Wimo A. Winblad B. Hansson O. Blennow K. Eriksdotter M. Zetterberg H. CSF/serum albumin ratio in dementias: A cross-sectional study on 1861 patients. Neurobiol. Aging 2017 59 1 9 10.1016/j.neurobiolaging.2017.06.028 28779628
    [Google Scholar]
  95. Mavroudis I. Chowdhury R. Petridis F. Karantali E. Chatzikonstantinou S. Balmus I.M. Luca I.S. Ciobica A. Kazis D. YKL-40 as a potential biomarker for the differential diagnosis of alzheimer’s disease. Medicina 2021 58 1 60 10.3390/medicina58010060 35056368
    [Google Scholar]
  96. Lee W.J. Liao Y.C. Wang Y.F. Lin I.F. Wang S.J. Fuh J.L. Plasma MCP-1 and cognitive decline in patients with alzheimer’s disease and mild cognitive impairment: A two-year follow-up study. Sci. Rep. 2018 8 1 1280 10.1038/s41598‑018‑19807‑y 29352259
    [Google Scholar]
  97. Kim K.Y. Shin K.Y. Chang K.A. GFAP as a potential biomarker for alzheimer’s disease: A systematic review and meta-analysis. Cells 2023 12 9 1309 10.3390/cells12091309 37174709
    [Google Scholar]
  98. Saunders T. Gunn C. Blennow K. Kvartsberg H. Zetterberg H. Shenkin S.D. Cox S.R. Deary I.J. Smith C. King D. Spires-Jones T. Neurogranin in Alzheimer’s disease and ageing: A human post-mortem study. Neurobiol. Dis. 2023 177 105991 10.1016/j.nbd.2023.105991 36623608
    [Google Scholar]
  99. Ohara T. Hata J. Tanaka M. Honda T. Yamakage H. Yoshida D. Inoue T. Hirakawa Y. Kusakabe T. Shibata M. Teraoka T. Kitazono T. Kanba S. Satoh-Asahara N. Ninomiya T. Serum soluble triggering receptor expressed on myeloid cells 2 as a biomarker for incident dementia: The hisayama study. Ann. Neurol. 2019 85 1 47 58 10.1002/ana.25385 30485483
    [Google Scholar]
  100. Henderson M.X. Trojanowski J.Q. Lee V.M.Y. α-Synuclein pathology in Parkinson’s disease and related α-synucleinopathies. Neurosci. Lett. 2019 709 134316 10.1016/j.neulet.2019.134316 31170426
    [Google Scholar]
  101. Hampel H. Shen Y. Beta‐site amyloid precursor protein cleaving enzyme 1 (BACE1) as a biological candidate marker of Alzheimer’s disease. Scand. J. Clin. Lab. Invest. 2009 69 1 8 12 10.1080/00365510701864610 18609117
    [Google Scholar]
  102. Youn Y.C. Lee B.S. Kim G.J. Ryu J.S. Lim K. Lee R. Suh J. Park Y.H. Pyun J.M. Ryu N. Kang M.J. Kim H.R. Kang S. An S.S.A. Kim S. Blood amyloid-β oligomerization as a biomarker of alzheimer’s disease: A blinded validation study. J. Alzheimers Dis. 2020 75 2 493 499 10.3233/JAD‑200061 32310175
    [Google Scholar]
  103. Kumar R. Kumar R. Sharma N. Khurana N. Singh S.K. Satija S. Mehta M. Vyas M. Pharmacological evaluation of bromelain in mouse model of Alzheimer’s disease. Neurotoxicology 2022 90 19 34 10.1016/j.neuro.2022.02.009 35219781
    [Google Scholar]
  104. Delaby C. Hirtz C. Lehmann S. Overview of the blood biomarkers in Alzheimer’s disease: Promises and challenges. Rev. Neurol. 2023 179 3 161 172 10.1016/j.neurol.2022.09.003 36371265
    [Google Scholar]
  105. Attia M.F. Anton N. Wallyn J. Omran Z. Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019 71 8 1185 1198 10.1111/jphp.13098 31049986
    [Google Scholar]
  106. Huang J. Huang N. Mao Q. Shi J. Qiu Y. Natural bioactive compounds in Alzheimer’s disease: From the perspective of type 3 diabetes mellitus. Front. Aging Neurosci. 2023 15 1130253 10.3389/fnagi.2023.1130253 37009462
    [Google Scholar]
  107. Vrahatis A.G. Skolariki K. Krokidis M.G. Lazaros K. Exarchos T.P. Vlamos P. Revolutionizing the early detection of alzheimer’s disease through non-invasive biomarkers: The role of artificial intelligence and deep learning. Sensors 2023 23 9 4184 10.3390/s23094184 37177386
    [Google Scholar]
  108. Reus L.M. Vijverberg E.G.B. Tijms B.M. Kate M. Gossink F. Krudop W.A. Campo M. Teunissen C.E. Barkhof F. van der Flier W.M. Visser P.J. Dols A. Pijnenburg Y.A.L. Disease trajectories in behavioural variant frontotemporal dementia, primary psychiatric and other neurodegenerative disorders presenting with behavioural change. J. Psychiatr. Res. 2018 104 183 191 10.1016/j.jpsychires.2018.07.014 30103065
    [Google Scholar]
  109. Jansen I.E. Savage J.E. Watanabe K. Bryois J. Williams D.M. Steinberg S. Sealock J. Karlsson I.K. Hägg S. Athanasiu L. Voyle N. Proitsi P. Witoelar A. Stringer S. Aarsland D. Almdahl I.S. Andersen F. Bergh S. Bettella F. Bjornsson S. Brækhus A. Bråthen G. de Leeuw C. Desikan R.S. Djurovic S. Dumitrescu L. Fladby T. Hohman T.J. Jonsson P.V. Kiddle S.J. Rongve A. Saltvedt I. Sando S.B. Selbæk G. Shoai M. Skene N.G. Snaedal J. Stordal E. Ulstein I.D. Wang Y. White L.R. Hardy J. Hjerling-Leffler J. Sullivan P.F. van der Flier W.M. Dobson R. Davis L.K. Stefansson H. Stefansson K. Pedersen N.L. Ripke S. Andreassen O.A. Posthuma D. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Genet. 2019 51 3 404 413 10.1038/s41588‑018‑0311‑9 30617256
    [Google Scholar]
  110. Lozupone M. Panza F. Impact of apolipoprotein E isoforms on sporadic Alzheimer’s disease. Neural Regen. Res. 2024 19 1 80 83 10.4103/1673‑5374.375316 37488848
    [Google Scholar]
  111. Ashton N.J. Leuzy A. Karikari T.K. Mattsson-Carlgren N. Dodich A. Boccardi M. Corre J. Drzezga A. Nordberg A. Ossenkoppele R. Zetterberg H. Blennow K. Frisoni G.B. Garibotto V. Hansson O. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur. J. Nucl. Med. Mol. Imaging 2021 48 7 2140 2156 10.1007/s00259‑021‑05253‑y 33677733
    [Google Scholar]
  112. Mintun M.A. Lo A.C. Duggan Evans C. Wessels A.M. Ardayfio P.A. Andersen S.W. Shcherbinin S. Sparks J. Sims J.R. Brys M. Apostolova L.G. Salloway S.P. Skovronsky D.M. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 2021 384 18 1691 1704 10.1056/NEJMoa2100708 33720637
    [Google Scholar]
  113. Georgakas J.E. Howe M.D. Thompson L.I. Riera N.M. Riddle M.C. Biomarkers of Alzheimer’s disease: Past, present and future clinical use. Biomark. Neuropsychiatry 2023 8 100063 10.1016/j.bionps.2023.100063
    [Google Scholar]
  114. Barthélemy N.R. Salvadó G. Schindler S.E. He Y. Janelidze S. Collij L.E. Saef B. Henson R.L. Chen C.D. Gordon B.A. Li Y. La Joie R. Benzinger T.L.S. Morris J.C. Mattsson-Carlgren N. Palmqvist S. Ossenkoppele R. Rabinovici G.D. Stomrud E. Bateman R.J. Hansson O. Highly accurate blood test for Alzheimer’s disease is similar or superior to clinical cerebrospinal fluid tests. Nat. Med. 2024 30 4 1085 1095 10.1038/s41591‑024‑02869‑z 38382645
    [Google Scholar]
  115. Study to assess the safety and biological activity of AMX0035 for the treatment of alzheimer's disease (PEGASUS). Patent NCT03533257, 2021
  116. A clinical trial to determine the safety and efficacy of hope biosciences autologous mesenchymal stem cell therapy (HB-adMSCs) for the treatment of alzheimer's disease. Patent NCT04228666, 2021
  117. Randomized I/​II phase study of ALZT-OP1 combination therapy in alzheimer's disease and normal healthy volunteers. Patent NCT04570644, 2022
  118. Abyadeh M. Gupta V. Paulo J.A. Mahmoudabad A.G. Shadfar S. Mirshahvaladi S. Gupta V. Nguyen C.T.O. Finkelstein D.I. You Y. Haynes P.A. Salekdeh G.H. Graham S.L. Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer’s disease. Neural Regen. Res. 2024 19 6 1262 1276 10.4103/1673‑5374.386406 37905874
    [Google Scholar]
  119. Rawat P. Sehar U. Bisht J. Selman A. Culberson J. Reddy P.H. Phosphorylated tau in Alzheimer’s disease and other tauopathies. Int. J. Mol. Sci. 2022 23 21 12841 10.3390/ijms232112841 36361631
    [Google Scholar]
  120. Zhang Y. Chen H. Li R. Sterling K. Song W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023 8 1 248 10.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  121. Mayeux R. Biomarkers: Potential uses and limitations. NeuroRx 2004 1 2 182 188 10.1602/neurorx.1.2.182 15717018
    [Google Scholar]
  122. Kaštelan S. Braš M. Pjevač N. Bakija I. Tomić Z. Pjevač Keleminić N. Gverović Antunica A. Tear Biomarkers and Alzheimer’s Disease. Int. J. Mol. Sci. 2023 24 17 13429 10.3390/ijms241713429 37686235
    [Google Scholar]
  123. Tripathi T Khan H Direct interaction between the β-amyloid core and tau facilitates cross-seeding: A novel target for therapeutic intervention. Biochemistry 2020 59 4 341 342 10.1021/acs.biochem.9b01087
    [Google Scholar]
/content/journals/cprr/10.2174/0126660822329981241007105405
Loading
/content/journals/cprr/10.2174/0126660822329981241007105405
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: amyloid-β ; Alzheimer’s disease ; biomarker ; tau aggregation ; cognitive function ; propagation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test