Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Background

The polymorphism rs4444903 of the Epidermal Growth Factor gene (EGF A61G) causes differences in the EGF serum levels. It has become a biomarker for genetic susceptibility to cancer and a pharmacogenomic marker for therapies involving the EGF/EGF-receptor pathway.

Objective

The present study aimed to characterize the allele and genotype frequencies of the rs4444903 in a Cuban sample and its relationship to a specific genetic ancestry.

Methods

A cross-sectional study was carried out. Genomic data was collected from a dense genome-wide genotyping array analysis of 948 Cubans from all provinces. The allele and genotype frequencies of the rs4444903 were calculated. Analysis of ancestry-related allelic/genotypic differences was performed.

Results

The frequencies for both alleles were found to be very similar (0.52 for G . 0.48 for A allele), and genotype frequencies were 24.3%, 47.9%, and 27.8% for AA, AG, and GG, respectively. Greater differences were found between Cuban provinces, with frequencies for the G allele ranging from 0.38 in Artemisa to 0.69 in Guantánamo and for the GG genotype from 14.29% in Mayabeque to 50.88% in Guantánamo. An increased African-ancestry proportion was related to a higher probability of carrying G allele and GG genotype, with a significant (=0.0038, q=0.024) African-ancestry-enrichment pattern.

Conclusion

African ancestry seems to contribute to an increase in the EGF61*G allele in Cubans. Geographic patterns in admixture proportions for African and European ancestry are a determinant factor in the allelic and genotypic frequency differences between Cuban provinces. Such differences should be observed when designing association studies and implementing therapeutic approaches based on the EGF/EGF receptor pathway in Cuba.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921314514240906063754
2024-09-18
2025-02-20
Loading full text...

Full text loading...

References

  1. ShahbaziM. PravicaV. NasreenN. Association between functional polymorphism in EGF gene and malignant melanoma.Lancet2002359930439740110.1016/S0140‑6736(02)07600‑6 11844511
    [Google Scholar]
  2. Epidermal growth factor; EGF.Available from: https://www.omim.org/entry/131530?search=egfgene&highlight=egf%20gene
  3. ZengF. HarrisR.C. Epidermal growth factor, from gene organization to bedside.Semin. Cell Dev. Biol.20142821110.1016/j.semcdb.2014.01.011 24513230
    [Google Scholar]
  4. CostaB.M. FerreiraP. CostaS. Association between functional EGF+61 polymorphism and glioma risk.Clin. Cancer Res.20071392621262610.1158/1078‑0432.CCR‑06‑2606 17473192
    [Google Scholar]
  5. BaoG. WangM. GuoS. HanY. XuG. Association between epidermal growth factor +61 G/A polymorphism and glioma risk in a Chinese Han population.J. Int. Med. Res.20103851645165210.1177/147323001003800509 21309478
    [Google Scholar]
  6. HuM. ShiH. XuZ. LiuW. Association between epidermal growth factor gene rs4444903 polymorphism and risk of glioma.Tumour Biol.20133431879188510.1007/s13277‑013‑0730‑2 23645212
    [Google Scholar]
  7. VishnoiM. PandeyS.N. ModiD.R. KumarA. MittalB. Genetic susceptibility of epidermal growth factor +61A;G and transforming growth factor β1 -509C;T gene polymorphisms with gallbladder cancer.Hum. Immunol.200869636036710.1016/j.humimm.2008.04.004 18571008
    [Google Scholar]
  8. TanabeK.K. LemoineA. FinkelsteinD.M. Epidermal growth factor gene functional polymorphism and the risk of hepatocellular carcinoma in patients with cirrhosis.JAMA20082991536010.1001/jama.2007.65 18167406
    [Google Scholar]
  9. El ShayebA AsserS BahnasyN ElwazzanD Association between epidermal growth factor +61A/G (rs4444903) gene polymorphism with risk of hepatocellular carcinoma in cirrhotic hepatitis C patients.Afro-Egypt J Infect Endem Dis20220(0): 0.10.21608/aeji.2022.102429.1191
    [Google Scholar]
  10. WangQ. XuL. WuQ. ZhangM. ZhangJ. Association between the risk of hepatitis virus-related hepatocellular carcinoma and EGF polymorphism: A PRISMA-compliant updated meta-analysis.Medicine (Baltimore)202210142e3128010.1097/MD.0000000000031280 36281156
    [Google Scholar]
  11. BaghdadiI. Abu EllaK. El ShaarawayA. Genetic polymorphism of epidermal growth factor gene as a predictor of hepatocellular carcinoma in hepatitis C cirrhotic patients.Asian Pac. J. Cancer Prev.20202172047205310.31557/APJCP.2020.21.7.2047 32711431
    [Google Scholar]
  12. ZhuJ. MengX. YanF. A functional epidermal growth factor (EGF) polymorphism, EGF serum levels and renal cell carcinoma risk in a Chinese population.J. Hum. Genet.201055423624010.1038/jhg.2010.12 20203692
    [Google Scholar]
  13. YangP-W. HsiehM-S. HuangY.C. HsiehC.Y. ChiangT.H. LeeJ.M. Genetic variants of EGF and VEGF predict prognosis of patients with advanced esophageal squamous cell carcinoma.PLoS One201496e10032610.1371/journal.pone.0100326
    [Google Scholar]
  14. TianJ. LiuC. LiuG. ZuoC. ChenH. Cumulative evidence for association between genetic polymorphisms and esophageal cancer susceptibility: A review with evidence from meta‐analysis and genome‐wide association studies.Cancer Med.2019831289130510.1002/cam4.1972 30793520
    [Google Scholar]
  15. ZhuY. ChenZ. JiangH. LuB. The genetic association between EGF A61G polymorphism (rs4444903) and risk of colorectal cancer. An update meta-analysis and trial sequential analysis.Medicine (Baltimore)2019982e1400710.1097/MD.0000000000014007 30633190
    [Google Scholar]
  16. MontazeriZ. LiX. NyiranezaC. Systematic meta-analyses, field synopsis and global assessment of the evidence of genetic association studies in colorectal cancer.Gut20206981460147110.1136/gutjnl‑2019‑319313 31818908
    [Google Scholar]
  17. ZhuX. ShenY. XieQ. The association between EGF A61G polymorphism and risk of colorectal cancer in a Chinese population: A case-control study.Biosci. Rep.2019395BSR2019049510.1042/BSR20190495 31053624
    [Google Scholar]
  18. CacinaC. ArikanS. DüzköylüY. Analyses of EGF A61G gene variation and serum EGF level on gastric cancer susceptibility and clinicopathological parameters.Anticancer Res.201535527092713 25964549
    [Google Scholar]
  19. AminmalekM. MashayekhiF. SalehiZ. Epidermal growth factor +61A/G (rs4444903) promoter polymorphism and serum levels are linked to idiopathic male infertility.Br. J. Biomed. Sci.2021782929410.1080/09674845.2020.1774034 32448090
    [Google Scholar]
  20. GerberJ.T. dos SantosK.M. BrumB.K. Odontogenesis-related candidate genes involved in variations of permanent teeth size.Clin. Oral Investig.20212574481449410.1007/s00784‑020‑03760‑0 33651240
    [Google Scholar]
  21. ChangZ. JiangD. ZhangS. Genetic association of the epidermal growth factor gene polymorphisms with peri-implantitis risk in Chinese population.Bioengineered20211218468847510.1080/21655979.2021.1983976 34592884
    [Google Scholar]
  22. ALFA: Allele Frequency Aggregator.Available from: https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/
  23. AutonA. AbecasisG.R. AltshulerD.M. A global reference for human genetic variation.Nature20155267571687410.1038/nature15393 26432245
    [Google Scholar]
  24. SaavedraD. CrombetT. CIMAvax-EGF: A new therapeutic vaccine for advanced non-small cell lung cancer patients.Front. Immunol.20178March26910.3389/fimmu.2017.00269 28348561
    [Google Scholar]
  25. SaavedraD. NeningerE. RodriguezC. CIMAvax-EGF: Toward long-term survival of advanced NSCLC.Semin. Oncol.2018451-2344010.1053/j.seminoncol.2018.04.009 30318082
    [Google Scholar]
  26. MoralesO.S. Luaces P LE N, T C. High levels of serum EGF concentration predict response to Cimavax-EGF treatment in advanced NSCLC.J Cancer Sci Clin Ther20205111010.26502/jcsct.5079097
    [Google Scholar]
  27. Marcheco-TeruelB. ParraE.J. Fuentes-SmithE. Cuba: Exploring the history of admixture and the genetic basis of pigmentation using autosomal and uniparental markers.PLoS Genet.2014107e100448810.1371/journal.pgen.1004488
    [Google Scholar]
  28. Fortes-LimaC. Bybjerg-GrauholmJ. Marin-PadrónL.C. Exploring Cuba’s population structure and demographic history using genome-wide data.Sci. Rep.2018811142210.1038/s41598‑018‑29851‑3 30061702
    [Google Scholar]
  29. Official Gazette No69 Ordinary of December 14, 2004. Resolution 132/2004 of the Ministry of Public Health of Cuba.2004Available from: https://salud.msp.gob.cu/wpcontent/uploads/2019/02/RM_132_2004.pdf
  30. Official Gazette No29 Extraordinary of June 18, 2007. Resolution 219/2007 of the Ministry of Public Health of Cuba.2007Available from: https://www.salud.msp.gob.cu/wp-content/uploads/2019/02/RM_219_2007.pdf
  31. PurcellS. NealeB. Todd-BrownK. PLINK: A tool set for whole-genome association and population-based linkage analyses.Am. J. Hum. Genet.200781355957510.1086/519795 17701901
    [Google Scholar]
  32. NorrisE.T. WangL. ConleyA.B. Genetic ancestry, admixture and health determinants in Latin America.BMC Genomics201819S886110.1186/s12864‑018‑5195‑7 30537949
    [Google Scholar]
  33. Population genetics - Homo_sapiens2024Available from: https://asia.ensembl.org/Homo_sapiens/Variation/Population
  34. FaulF. ErdfelderE. LangAG. BuchnerA. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences.Behav. Res. Methods200739217519110.3758/BF03193146 17695343
    [Google Scholar]
  35. FaulF. ErdfelderE. BuchnerA. LangA.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses.Behav. Res. Methods20094141149116010.3758/BRM.41.4.1149 19897823
    [Google Scholar]
  36. KangH. Sample size determination and power analysis using the G*Power software.J. Educ. Eval. Health Prof.2021181710.3352/jeehp.2021.18.17 34325496
    [Google Scholar]
  37. SerdarC.C. CihanM. YücelD. SerdarM.A. Sample size, power and effect size revisited: simplified and practical approaches in pre-clinical, clinical and laboratory studies.Biochem. Med. (Zagreb)2021311275310.11613/BM.2021.010502 33380887
    [Google Scholar]
  38. MarinovićS. Cigrovski BerkovićM. Zjačić-RotkvićV. KapitanovićS. Analysis of polymorphisms in EGF, EGFR and HER2 genes in pancreatic neuroendocrine tumors (PNETs).Cancer Genet.2022266-267445010.1016/j.cancergen.2022.06.005 35777127
    [Google Scholar]
  39. DugăeșescuM. MușatF. AndronicO. The polymorphisms of epidermal growth factor-driven signaling and cancer pathogenesis.Sudan J Med Sci202116220722210.18502/sjms.v16i2.9289
    [Google Scholar]
  40. WangJ. ZhongY. MengG. EGF rs4444903 polymorphism is associated with risk of HCV-related cirrhosis and HBV/HCV-related hepatocellular carcinoma.Int. J. Clin. Oncol.202126112053206410.1007/s10147‑021‑01994‑w 34291370
    [Google Scholar]
  41. ChenthuranT. GalhenageyG.H. JayasekaraR.W. DissanayakeV.H.W. Polymorphism in the epidermal growth factor gene is associated with pre‐eclampsia and low birthweight.J. Obstet. Gynaecol. Res.20144051235124210.1111/jog.12362 24754849
    [Google Scholar]
  42. Reference SNP (rs) Report.Available from: https://www.ncbi.nlm.nih.gov/snp/rs4444903#frequency_tab 2022
  43. LausA.C. de PaulaF.E. de LimaM.A. EGF+61 A>G polymorphism is not associated with lung cancer risk in the Brazilian population.Mol. Biol. Rep.20194622417242510.1007/s11033‑019‑04702‑0 30783937
    [Google Scholar]
  44. HänninenK. KatilaH. AnttilaS. Epidermal growth factor a61g polymorphism is associated with the age of onset of schizophrenia in male patients.J. Psychiatr. Res.2007411-281410.1016/j.jpsychires.2005.07.001 16115648
    [Google Scholar]
  45. LeeK.Y. AhnY.M. JooE.J. Partial evidence of an association between epidermal growth factor A61G polymorphism and age at onset in male schizophrenia.Neurosci. Res.200656435636210.1016/j.neures.2006.08.004
    [Google Scholar]
  46. SheuC.C. ZhaiR. SuL. Sex-specific association of epidermal growth factor gene polymorphisms with acute respiratory distress syndrome.Eur. Respir. J.200933354355010.1183/09031936.00091308 19010984
    [Google Scholar]
  47. MeyboschS. De MonieA. AnnéC. Epidermal growth factor and its influencing variables in healthy children and adults.PLoS One2019141e021121210.1371/journal.pone.0211212
    [Google Scholar]
  48. McVeanG.A.T. MyersS.R. HuntS. DeloukasP. BentleyD.R. DonnellyP. The fine-scale structure of recombination rate variation in the human genome.Science2004304567058158410.1126/science.1092500 15105499
    [Google Scholar]
  49. KimS.A. ChoC.S. KimS.R. BullS.B. YooY.J. A new haplotype block detection method for dense genome sequencing data based on interval graph modeling of clusters of highly correlated SNPs.Bioinformatics201834338839710.1093/bioinformatics/btx609 29028986
    [Google Scholar]
  50. BrowningS.R. BrowningB.L. DaviglusM.L. Ancestry-specific recent effective population size in the Americas.PLoS Genet.2018145e100738510.1371/journal.pgen.1007385 29795556
    [Google Scholar]
  51. GoliR.C. ChishiK.G. GangulyI. Global and local ancestry and its importance: A review.Curr. Genomics202425423726010.2174/0113892029298909240426094055 39156729
    [Google Scholar]
  52. SchubertR. AndaleonA. WheelerH.E. Comparing local ancestry inference models in populations of two- and three-way admixture.PeerJ20208e1009010.7717/peerj.10090 33072440
    [Google Scholar]
  53. BrowningS.R. WaplesR.K. BrowningB.L. Fast, accurate local ancestry inference with FLARE.Am. J. Hum. Genet.2023110232633510.1016/j.ajhg.2022.12.010 36610402
    [Google Scholar]
  54. OliveiraS. MarchiN. ExcoffierL. Assessing the limits of local ancestry inference from small reference panels.Mol. Ecol. Resour.2024246e1398110.1111/1755‑0998.13981 38775247
    [Google Scholar]
  55. NorrisE.T. LavanyaR. King JordanI. Rapid, adaptive human evolution facilitated by admixture in the Americas. Muñoz-MorenoM.L. CrawfordM.H. Human Migration: Biocultural Perspectives.OxfordAcademic202112213810.1093/oso/9780190945961.003.0011
    [Google Scholar]
  56. BurgessA.W. Regulation of signaling from the epidermal growth factor family.J. Phys. Chem. B2022126397475748510.1021/acs.jpcb.2c04156 36169380
    [Google Scholar]
  57. JiangG. YuK. ShaoL. Association between epidermal growth factor gene +61A/G polymorphism and the risk of hepatocellular carcinoma: A meta-analysis based on 16 studies.BMC Cancer201515131410.1186/s12885‑015‑1318‑6 25927412
    [Google Scholar]
  58. WenJ. XuQ. YuanY. Single nucleotide polymorphisms and sporadic colorectal cancer susceptibility: A field synopsis and meta-analysis.Cancer Cell Int.201818115510.1186/s12935‑018‑0656‑2 30337837
    [Google Scholar]
  59. GawishE.A. AbdelsameeaE. Shaban OshebaI. MohsenY. El-AbdM.G. Epidermal growth factor rs4444903 polymorphism and risk of cholangiocarcinoma. A case control study.Clin. Exp. Hepatol.20239213814510.5114/ceh.2023.128131 37502431
    [Google Scholar]
  60. de MelloR.A. FerreiraM. CostaS. Association between EGF +61 genetic polymorphisms and non-small cell lung cancer increased risk in a Portuguese population: A case–control study.Tumour Biol.20123351341134810.1007/s13277‑012‑0382‑7 22457050
    [Google Scholar]
  61. CmetS. FabrisC. FattovichG. Carriage of the EGF rs4444903 A>G functional polymorphism associates with disease progression in chronic HBV infection.Clin. Exp. Immunol.2012167229630210.1111/j.1365‑2249.2011.04497.x 22236006
    [Google Scholar]
  62. FalletiE. CmetS. FabrisC. Association between the epidermal growth factor rs4444903 G/G genotype and advanced fibrosis at a young age in chronic hepatitis C.Cytokine2012571687310.1016/j.cyto.2011.10.018 22122913
    [Google Scholar]
  63. ChenQ. ZhengY. WuB. ChenX. GeP. WangP. Association between polymorphisms of epidermal growth factor 61 and susceptibility of lung cancer.Medicine (Baltimore)20209917e1945610.1097/MD.0000000000019456 32332599
    [Google Scholar]
  64. DeissovaT. CvanovaM. KalaZ. Lack of association between epidermal growth factor or its receptor and reflux Esophagitis, Barrett’s Esophagus, and Esophageal Adenocarcinoma: A case-control study.Dis. Markers2022202211310.1155/2022/8790748 36092955
    [Google Scholar]
  65. WuD. WuY. ZhangX. CongP. LvX. Lack of association between EGF +61A>G polymorphism and melanoma susceptibility in Caucasians: A Huge review and meta-analysis.Gene2013515235936610.1016/j.gene.2012.11.014 23201894
    [Google Scholar]
  66. DahanL. NorguetE. Etienne-GrimaldiM.C. Pharmacogenetic profiling and cetuximab outcome in patients with advanced colorectal cancer.BMC Cancer201111149610.1186/1471‑2407‑11‑496 22117530
    [Google Scholar]
  67. ZhangW. GordonM. PressO.A. Cyclin D1 and epidermal growth factor polymorphisms associated with survival in patients with advanced colorectal cancer treated with Cetuximab.Pharmacogenet. Genomics200616747548310.1097/01.fpc.0000220562.67595.a5 16788380
    [Google Scholar]
  68. Hu-LieskovanS. VallbohmerD. ZhangW. EGF61 polymorphism predicts complete pathologic response to cetuximab-based chemoradiation independent of KRAS status in locally advanced rectal cancer patients.Clin. Cancer Res.201117155161516910.1158/1078‑0432.CCR‑10‑2666 21673069
    [Google Scholar]
  69. ViadaC. VegaA.M. RobainaM. Evaluation of Nimotuzumab for the treatment of head and neck cancer: Meta-analysis of controlled trials.Bionatura2020511056106210.21931/RB/2020.05.01.8
    [Google Scholar]
  70. Crombet RamosT. Mestre FernándezB. Mazorra HerreraZ. Iznaga EscobarN.E. Nimotuzumab for patients with inoperable cancer of the head and neck.Front. Oncol.20201081710.3389/fonc.2020.00817 32537431
    [Google Scholar]
  71. GonzálezG. LageA. CrombetT. RodríguezG. GarcíaB. CuevasA. CIMAvax-EGF: A novel therapeutic vaccine for advanced lung cancer.Biotecnol. Apl.2009264345348
    [Google Scholar]
  72. Lorenzo-LuacesP. SanchezL. SaavedraD. Identifying predictive biomarkers of CIMAvaxEGF success in non–small cell lung cancer patients.BMC Cancer202020177210.1186/s12885‑020‑07284‑4 32807114
    [Google Scholar]
  73. PatrinosG.P. Sketching the prevalence of pharmacogenomic biomarkers among populations for clinical pharmacogenomics.Eur. J. Hum. Genet.20202811310.1038/s41431‑019‑0499‑x 31485027
    [Google Scholar]
  74. ZhouY. LauschkeV.M. Population pharmacogenomics: An update on ethnogeographic differences and opportunities for precision public health.Hum. Genet.202214161113113610.1007/s00439‑021‑02385‑x 34652573
    [Google Scholar]
  75. PatrinosG.P. QuinonesL.A. SukasemC. Editorial: Pharmacogenomics and ethnicity: Prevalence and clinical significance of pharmacogenomic biomarkers in indigenous and other populations.Front. Pharmacol.202314118048710.3389/fphar.2023.1180487 37063283
    [Google Scholar]
  76. OuF.S. MichielsS. ShyrY. AdjeiA.A. ObergA.L. Biomarker discovery and validation: Statistical considerations.J. Thorac. Oncol.202116453754510.1016/j.jtho.2021.01.1616 33545385
    [Google Scholar]
  77. CaliebeA. Tekola-AyeleF. DarstB.F. Including diverse and admixed populations in genetic epidemiology research.Genet. Epidemiol.202246734737110.1002/gepi.22492 35842778
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921314514240906063754
Loading
/content/journals/cppm/10.2174/0118756921314514240906063754
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test