Full text loading...
-
New Generation Smart Drug Delivery Systems for Rheumatoid Arthritis
- Source: Current Pharmaceutical Design, Volume 29, Issue 13, Apr 2023, p. 984 - 1001
-
- 01 Apr 2023
Abstract
Rheumatoid arthritis (RA) is the most common form of the chronic inflammatory autoimmune disease characterized by chronic synovitis, synovial proliferation, and cellular infiltration. Further, it leads to bone erosion, destruction of articular cartilage, intense joint pain, swelling, and a high rate of disability, causing an immense load on human health. If the disease is identified early on, and the patient has continuous and timely treatment, many patients can achieve remission. Although research in RA has made considerable progress, conventional therapies are still the most popular treatment options for most people with RA. But, conventional therapies are hampered by various drawbacks, including higher doses, low solubility and permeability, poor bioavailability, a high level of first-pass metabolism, adaptive treatment tolerance (ATT), and long-term drug use. These drawbacks can result in severe side effects and drug toxicity in patients. Advances in polymer science and the application of nanotechnology in drug delivery systems have provided new possibilities in the treatment of RA by developing new-generation smart drug delivery systems (SDDSs). The shortcomings of non-specific drug distribution and uncontrollable drug release by traditional delivery systems have motivated the creation of next-generation SDDSs. These new smart drug delivery treatment methods have significantly changed the course of RA. Such systems can improve drug delivery by virtue of their multi-functionality and targeting capabilities. The ultimate objective of next-generation SDDSs is to deliver medication at the optimal time with precise dosage and efficiency and specificity to the targeted site (such as cells, tissues, and organs), which can aid patients to adhere better to their therapy. This review highlights and discusses the various next-generation SDDSs along with the conventional treatment options available for RA management.