Skip to content
2000
Volume 28, Issue 45
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Insomnia is well-known as trouble in sleeping and enormously influences human life due to the shortage of sleep. Reactive Oxygen Species (ROS) accrue in neurons during the waking state, and sleep has a defensive role against oxidative damage and dissipates ROS in the brain. In contrast, insomnia is the source of inequity between ROS generation and removal by an endogenous antioxidant defense system. The relationship between insomnia, depression, and anxiety disorders damages the cardiovascular systems' immune mechanisms and functions. Traditionally, polysomnography is used in the diagnosis of insomnia. This technique is complex, with a long time overhead. In this work, we have proposed a novel machine learning-based automatic detection system using the R-R intervals extracted from a single-lead electrocardiograph (ECG). Additionally, we aimed to explore the role of oxidative stress and inflammation in sleeping disorders and cardiovascular diseases, antioxidants’ effects, and the psychopharmacological effect of herbal medicine. This work has been carried out in steps, which include collecting the ECG signal for normal and insomnia subjects, analyzing the signal, and finally, automatic classification. We used two approaches, including subjects (normal and insomnia), two sleep stages, ., wake and rapid eye movement, and three Machine Learning (ML)-based classifiers to complete the classification. A total number of 3000 ECG segments were collected from 18 subjects. Furthermore, using the theranostics approach, the role of mitochondrial dysfunction causing oxidative stress and inflammatory response in insomnia and cardiovascular diseases was explored. The data from various databases on the mechanism of action of different herbal medicines in insomnia and cardiovascular diseases with antioxidant and antidepressant activities were also retrieved. Random Forest (RF) classifier has shown the highest accuracy (subjects: 87.10% and sleep stage: 88.30%) compared to the Decision Tree (DT) and Support Vector Machine (SVM). The results revealed that the suggested method could perform well in classifying the subjects and sleep stages. Additionally, a random forest machine learning-based classifier could be helpful in the clinical discovery of sleep complications, including insomnia. The evidence retrieved from the databases showed that herbal medicine contains numerous phytochemical bioactives and has multimodal cellular mechanisms of action, ., antioxidant, anti-inflammatory, vasorelaxant, detoxifier, antidepressant, anxiolytic, and cell-rejuvenator properties. Other herbal medicines have a GABA-A receptor agonist effect. Hence, we recommend that the theranostics approach has potential and can be adopted for future research to improve the quality of life of humans.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612829666221201161636
2022-01-01
2024-10-09
Loading full text...

Full text loading...

References

  1. Heyat M.B.B. Akhtar F. Khan M.H. Ullah N. Gul I. Khan H. Lai D. Detection, treatment planning, and genetic predisposition of bruxism: A systematic mapping process and network visualization technique. CNS Neurol. Disord. Drug Targets 2021 20 8 755 775 10.2174/18715273MTExjMzMh3 33172381
    [Google Scholar]
  2. Hasan Y.M. Bin Heyat B. Siddiqui M.M. Azad S. Akhtar F. An overview of sleep and stages of sleep. Int. J. Adv. Res. Comput. Commun. Eng. 2015 4 505 507 10.17148/IJARCCE.2015.412144
    [Google Scholar]
  3. Bin Heyat M.B. Akhtar F. Ansari M.A. Khan A. Alkahtani F. Khan H. Lai D. Progress in detection of insomnia sleep disorder: A comprehensive review. Curr. Drug Targets 2021 22 6 672 684 10.2174/1389450121666201027125828 33109045
    [Google Scholar]
  4. Sultana A. Khanam M. Rahman K. Traditional Unani medicine in flu-like epidemics and COVID-19 during pregnancy : A literary research. Cell Med. 2021 11 1 23 10.5667/CellMed.2021.0020
    [Google Scholar]
  5. Hillman D.R. Lack L.C. Public health implications of sleep loss: The community burden. Med. J. Aust. 2013 199 S8 S7 S10 10.5694/mja13.10620 24138358
    [Google Scholar]
  6. Bin Heyat M.B. Akhtar F. Khan A. Noor A. Benjdira B. Qamar Y. Abbas S.J. Lai D. A novel hybrid machine learning classification for the detection of bruxism patients using physiological signals. Appl. Sci. 2020 10 21 7410 10.3390/app10217410
    [Google Scholar]
  7. Allan Hobson J. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Electroencephalogr. Clin. Neurophysiol. 1969 26 6 644 10.1016/0013‑4694(69)90021‑2
    [Google Scholar]
  8. Grigg-Damberger M.M. The AASM scoring manual four years later. J. Clin. Sleep Med. 2012 8 3 323 332 10.5664/jcsm.1928 22701392
    [Google Scholar]
  9. Bb H. Akhtar F. Mehdi A. Azad S. Azad S. Azad S. Normalized power are used in the diagnosis of insomnia medical sleep syndrome through EMG1-EMG2 channel. Austin J. Sleep Disord. 2017 4 2 4
    [Google Scholar]
  10. Bin Heyat M.B. Insomnia: Medical sleep disorder & diagnosis. 1st ed Hamburg, Germany Anchor Academic Publishing 2016
    [Google Scholar]
  11. Bin Heyat B. Akhtar F. Singh S.K. Siddiqui M.M. Hamming Window are used in the Prognostic of Insomnia. International Seminar on present scenario & future prospectives of research in engineering & sciences (ISPSFPRES-17) 2017 65 71
    [Google Scholar]
  12. Bin Heyat M.B. Akhtar F. Sikandar M. Siddiqui H. Azad S. An overview of dalk therapy and treatment of insomnia in dalk therapy. 2015
    [Google Scholar]
  13. Bin Heyat M.B. Lai D. Akhtar F. Bin Hayat M.A. Azad S. Azad S. Azad S. Bruxism detection using single-channel C4-A1 on human sleep S2 stage recording. Intell. Data Anal. 1st ed Gupta D. Bhattacharyya S. Khanna A. John Wiley & Sons 2020 347 367 10.1002/9781119544487.ch17
    [Google Scholar]
  14. Bin Heyat M.B. Akhtar F. Ammar M. Hayat B. Azad S. Power spectral density are used in the investigation of insomnia neurological disorder. XL- Pre Congr. Symp., King George Medical University & State Takmeelut-Tib College and Hospital, Lucknow, Uttar Pradesh, India, Lucknow, UP, India 2016
    [Google Scholar]
  15. Morin C.M. Drake C.L. Harvey A.G. Krystal A.D. Manber R. Riemann D. Spiegelhalder K. Insomnia disorder. Nat. Rev. Dis. Primers 2015 1 1 15026 10.1038/nrdp.2015.26 27189779
    [Google Scholar]
  16. Buysse D.J. Insomnia. JAMA 2013 309 7 706 716 10.1001/jama.2013.193 23423416
    [Google Scholar]
  17. Panda S. Taly A. Sinha S. Gururaj G. Girish N. Nagaraja D. Sleep- related disorders among a healthy population in South India. Neurol. India 2012 60 1 68 74 10.4103/0028‑3886.93601 22406784
    [Google Scholar]
  18. Bittencourt L.R.A. Santos-Silva R. Taddei J.A. Andersen M.L. de Mello M.T. Tufik S. Sleep complaints in the adult Brazilian population: A national survey based on screening questions. J. Clin. Sleep Med. 2009 5 5 459 463 10.5664/jcsm.27603 19961032
    [Google Scholar]
  19. Lucke-Wold B.P. Smith K.E. Nguyen L. Turner R.C. Logsdon A.F. Jackson G.J. Huber J.D. Rosen C.L. Miller D.B. Sleep disruption and the sequelae associated with traumatic brain injury. Neurosci. Biobehav. Rev. 2015 55 68 77 10.1016/j.neubiorev.2015.04.010 25956251
    [Google Scholar]
  20. Gulec M. Ozkol H. Selvi Y. Tuluce Y. Aydin A. Besiroglu L. Ozdemir P.G. Oxidative stress in patients with primary insomnia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012 37 2 247 251 10.1016/j.pnpbp.2012.02.011 22401887
    [Google Scholar]
  21. Zakkar M. Guida G. Suleiman M.S. Angelini G.D. Cardiopulmonary bypass and oxidative stress. Oxid. Med. Cell. Longev. 2015 2015 1 8 10.1155/2015/189863 25722792
    [Google Scholar]
  22. Aghili-Mehrizi S. Williams E. Yan S. Willman M. Willman J. Lucke-Wold B. Secondary mechanisms of neurotrauma: A closer look at the evidence. Diseases 2022 10 2 30 10.3390/diseases10020030 35645251
    [Google Scholar]
  23. Hill V.M. O’Connor R.M. Sissoko G.B. Irobunda I.S. Leong S. Canman J.C. Stavropoulos N. Shirasu-Hiza M. A bidirectional relationship between sleep and oxidative stress in Drosophila. PLoS Biol. 2018 16 7 e2005206 10.1371/journal.pbio.2005206 30001323
    [Google Scholar]
  24. Javaheri S. Redline S. Insomnia and risk of cardiovascular disease. Chest 2017 152 435 444 10.1016/j.chest.2017.01.026
    [Google Scholar]
  25. Qaseem A. Kansagara D. Forciea M.A. Cooke M. Denberg T.D. Barry M.J. Boyd C. Chow R.D. Fitterman N. Harris R.P. Humphrey L.L. Manaker S. McLean R. Mir T.P. Schünemann H.J. Vijan S. Wilt T. Management of chronic insomnia disorder in adults: A clinical practice guideline from the American college of physicians. Ann. Intern. Med. 2016 165 2 125 133 10.7326/M15‑2175 27136449
    [Google Scholar]
  26. Sateia M.J. Buysse D.J. Krystal A.D. Neubauer D.N. Heald J.L. Clinical practice guideline for the pharmacologic treatment of chronic insomnia in adults: An American academy of sleep medicine clinical practice guideline. J. Clin. Sleep Med. 2017 13 2 307 349 10.5664/jcsm.6470 27998379
    [Google Scholar]
  27. Ong J.C. Manber R. Segal Z. Xia Y. Shapiro S. Wyatt J.K. A randomized controlled trial of mindfulness meditation for chronic insomnia. Sleep 2014 37 9 1553 1563 10.5665/sleep.4010 25142566
    [Google Scholar]
  28. Zammit G. The prevalence, morbidities, and treatments of insomnia. CNS Neurol. Disord. Drug Targets 2007 6 1 3 16 10.2174/187152707779940754 17305550
    [Google Scholar]
  29. Wang Y. Zou J. Jia Y. Liang Y. Zhang X. Wang C.L. Wang X. Guo D. Shi Y. Yang M. A study on the mechanism of lavender in the treatment of insomnia based on network pharmacology. Comb. Chem. High Throughput Screen. 2020 23 5 419 432 10.2174/1386207323666200401095008 32233997
    [Google Scholar]
  30. Liu L. Liu C. Wang Y. Wang P. Li Y. Li B. Herbal medicine for anxiety, depression and insomnia. Curr. Neuropharmacol. 2015 13 4 481 493 10.2174/1570159X1304150831122734 26412068
    [Google Scholar]
  31. Ohayon M.M. Reynolds C.F. III Epidemiological and clinical relevance of insomnia diagnosis algorithms according to the DSM-IV and the International Classification of Sleep Disorders (ICSD). Sleep Med. 2009 10 9 952 960 10.1016/j.sleep.2009.07.008 19748312
    [Google Scholar]
  32. Morin C.M. Belleville G. Bélanger L. Ivers H. The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011 34 5 601 608 10.1093/sleep/34.5.601 21532953
    [Google Scholar]
  33. Aydın S. Saraoǧlu H.M. Kara S. Singular spectrum analysis of sleep EEG in insomnia. J. Med. Syst. 2011 35 4 457 461 10.1007/s10916‑009‑9381‑7 20703545
    [Google Scholar]
  34. Israel B. Buysse D.J. Krafty R.T. Begley A. Miewald J. Hall M. Short-term stability of sleep and heart rate variability in good sleepers and patients with insomnia: For some measures, one night is enough. Sleep 2012 35 9 1285 1291 10.5665/sleep.2088 22942507
    [Google Scholar]
  35. Bin Heyat B. Hasan Y.M. Siddiqui M.M. EEG signals and wireless transfer of EEG signals. Int. J. Adv. Res. Comput. Commun. Eng. 2015 4 10 12 10.17148/IJARCCE.2015.412143
    [Google Scholar]
  36. Ali L. Rahman A. Khan A. Zhou M. Javeed A. Khan J.A. An automated diagnostic system for heart disease prediction based on X2 statistical model and optimally configured deep neural network. IEEE Access 2019 7 34938 34945 10.1109/ACCESS.2019.2904800
    [Google Scholar]
  37. AlShorman O. Masadeh M. Bin Heyat M.B. Akhtar F. Almahasneh H. Ashraf G.M. Alexiou A. Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection. J. Integr. Neurosci. 2022 21 1 20 10.31083/j.jin2101020
    [Google Scholar]
  38. Siddiqui M.M. Srivastava G. Saeed S.H. Diagnosis of insomnia sleep disorder using short time frequency analysis of PSD approach applied on EEG signal using channel ROC-LOC. Sleep Sci. 2016 9 3 186 191 10.1016/j.slsci.2016.07.002 28123658
    [Google Scholar]
  39. Gemignani A. Laurino M. Provini F. Piarulli A. Barletta G. d’Ascanio P. Bedini R. Lodi R. Manners D.N. Allegrini P. Menicucci D. Cortelli P. Thalamic contribution to sleep slow oscillation features in humans: A single case cross sectional EEG study in Fatal Familial Insomnia. Sleep Med. 2012 13 7 946 952 10.1016/j.sleep.2012.03.007 22609023
    [Google Scholar]
  40. Kaplan R. Wang Y. Loparo K. Kelly M. Bootzin R. Performance evaluation of an automated single-channel sleep-wake detection algorithm. Nat. Sci. Sleep 2014 6 113 122 10.2147/NSS.S71159 25342922
    [Google Scholar]
  41. Hamida S.T-B. Ahmed B. Cvetkovic D. Jovanov E. Kennedy G. Penzel T. A new era in sleep monitoring: The application of mobile technologies in insomnia diagnosis. Mobile Health: The Technology Road Map 2015 101 127 10.1007/978‑3‑319‑12817‑7_5
    [Google Scholar]
  42. Ben Hamida S.T. Ahmed B. Penzel T. A novel insomnia identification method based on Hjorth parameters 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT) 2016 10.1109/ISSPIT.2015.7394397
    [Google Scholar]
  43. Redeker N.S. Stein S. Characteristics of sleep in patients with stable heart failure versus a comparison group. Heart Lung 2006 35 4 252 261 10.1016/j.hrtlng.2005.10.007 16863897
    [Google Scholar]
  44. Redeker N.S. Jeon S. Muench U. Campbell D. Walsleben J. Rapoport D.M. Insomnia symptoms and daytime function in stable heart failure. Sleep 2010 33 9 1210 1216 10.1093/sleep/33.9.1210 20857868
    [Google Scholar]
  45. Lai D. Zhang X. Zhang Y. Bin Heyat M.B. Convolutional neural network based detection of atrial fibrillation combing R-R intervals and F-wave frequency spectrum. Annu Int Conf IEEE Eng Med Biol Soc 2019 2019 4897 4900 10.1109/EMBC.2019.8856342
    [Google Scholar]
  46. Hassan A.R. Bhuiyan M.I.H. Computer-aided sleep staging using complete ensemble empirical mode decomposition with adaptive noise and bootstrap aggregating. Biomed. Signal Process. Control 2016 24 1 10 10.1016/j.bspc.2015.09.002
    [Google Scholar]
  47. Lai D. Heyat M.B.B. Khan F.I. Zhang Y. Prognosis of sleep bruxism using power spectral density approach applied on EEG signal of both EMG1-EMG2 and ECG1-ECG2 channels. IEEE Access 2019 7 82553 82562 10.1109/ACCESS.2019.2924181
    [Google Scholar]
  48. Bin Heyat M.B. Lai D. Akhtar F. Bin Hayat M.A. Azad S. Short Time Frequency Analysis of Theta Activity for the Diagnosis of Bruxism on EEG Sleep Record. Advanced Computational Intelligence Techniques for Virtual Reality in Healthcare. Studies in Computational Intelligence Springer Cham 2020 875 10.1007/978‑3‑030‑35252‑3_4
    [Google Scholar]
  49. Goldberger A.L. Amaral L.A.N. Glass L. Hausdorff J.M. Ivanov P.C. Mark R.G. Mietus J.E. Moody G.B. Peng C.K. Stanley H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000 101 23 E215 E220 10.1161/01.CIR.101.23.e215 10851218
    [Google Scholar]
  50. Costa M. Moody G.B. Henry I. Goldberger A.L. PhysioNet: An NIH research resource for complex signals. J. Electrocardiol. 2003 36 S1 139 144 10.1016/j.jelectrocard.2003.09.038
    [Google Scholar]
  51. Brown R.E. Basheer R. McKenna J.T. Strecker R.E. McCarley R.W. Control of sleep and wakefulness. Physiol. Rev. 2012 92 3 1087 1187 10.1152/physrev.00032.2011 22811426
    [Google Scholar]
  52. Heyat M.B.B. Lai D. Khan F.I. Zhang Y. Sleep bruxism detection using decision tree method by the combination of C4-P4 and C4-A1 channels of scalp EEG. IEEE Access 2019 7 102542 102553 10.1109/ACCESS.2019.2928020
    [Google Scholar]
  53. Hassan A.R. Bhuiyan M.I.H. An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting. Neurocomputing 2017 219 76 87 10.1016/j.neucom.2016.09.011
    [Google Scholar]
  54. Hassan A.R. Bhuiyan M.I.H. Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting. Comput. Methods Programs Biomed. 2017 140 201 210 10.1016/j.cmpb.2016.12.015 28254077
    [Google Scholar]
  55. Dodds K.L. Miller C.B. Kyle S.D. Marshall N.S. Gordon C.J. Heart rate variability in insomnia patients: A critical review of the literature. Sleep Med. Rev. 2017 33 88 100 10.1016/j.smrv.2016.06.004 28187954
    [Google Scholar]
  56. Thayer J.F. Åhs F. Fredrikson M. Sollers J.J. III Wager T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012 36 2 747 756 10.1016/j.neubiorev.2011.11.009 22178086
    [Google Scholar]
  57. Huang S. Li J. Zhang P. Zhang W. Detection of mental fatigue state with wearable ECG devices. Int. J. Med. Inform. 2018 119 39 46 10.1016/j.ijmedinf.2018.08.010 30342684
    [Google Scholar]
  58. Schwerdtfeger A.R. Schwarz G. Pfurtscheller K. Thayer J.F. Jarczok M.N. Pfurtscheller G. Heart rate variability (HRV): From brain death to resonance breathing at 6 breaths per minute. Clin. Neurophysiol. 2020 131 3 676 693 10.1016/j.clinph.2019.11.013 31978852
    [Google Scholar]
  59. Lai D. Zhang Y. Zhang X. Su Y. Bin Heyat M.B. An automated strategy for early risk identification of sudden cardiac death by using machine learning approach on measurable arrhythmic risk markers. IEEE Access 2019 7 94701 94716 10.1109/ACCESS.2019.2925847
    [Google Scholar]
  60. Panigrahi R. Borah S. Social networks and their uses in the field of secondary education. Social Network Analytics. Computational Research Methods and Techniques Academic Press. Elsevier: Amsterdum 2019; 203-26. 10.1016/B978‑0‑12‑815458‑8.00001‑3
    [Google Scholar]
  61. Breiman L. Random forests. Mach. Learn. 2001 45 1 5 32 10.1023/A:1010933404324
    [Google Scholar]
  62. Bin Heyat M.B. Akhtar F. Abbas S.J. Al-Sarem M. Alqarafi A. Stalin A. Abbasi R. Muaad A.Y. Lai D. Wu K. Wearable flexible electronics based cardiac electrode for researcher mental stress detection system using machine learning models on single lead electrocardiogram signal. Biosensors 2022 12 6 427 10.3390/bios12060427
    [Google Scholar]
  63. Iqbal M.S. Abbasi R. Bin Heyat M.B. Akhtar F. Abdelgeliel A.S. Albogami S. Fayad E. Iqbal M.A. Recognition of mRNA N4 Acetylcytidine (ac4C) by using non-deep vs. deep learning. Appl. Sci. (Basel) 2022 12 3 1344 10.3390/app12031344
    [Google Scholar]
  64. Sultana A. Begum W. Saeedi R. Rahman K. Bin Heyat M.B. Akhtar F. Son N.T. Ullah H. Experimental and computational approaches for the classification and correlation of temperament (Mizaj) and uterine dystemperament (Su’-I-Mizaj Al-Rahim) in abnormal vaginal discharge (Sayalan Al-Rahim) based on clinical analysis using support vector machine. Complexity 2022 2022 1 16 10.1155/2022/5718501
    [Google Scholar]
  65. Sultana A. Rahman K. Bin Heyat M.B. Sumbul F. Role of inflammation, oxidative stress, and mitochondrial changes in premenstrual psychosomatic behavioral symptoms with anti-inflammatory, antioxidant herbs, and nutritional supplements. Oxid. Med. Cell. Longev. 2022 2022 3599246 10.1155/2022/3599246
    [Google Scholar]
  66. Ukwuoma C.C. Zhiguang Q. Bin Heyat M.B. Ali L. Almaspoor Z. Monday H.N. Recent advancements in fruit detection and classification using deep learning techniques. Math. Probl. Eng. 2022 2022 1 29 10.1155/2022/9210947
    [Google Scholar]
  67. Ullah H. Bin Heyat M.B. AlSalman H. Khan H.M. Akhtar F. Gumaei A. Mehdi A. Muaad A.Y. Islam M.S. Ali A. Bu Y. Khan D. Pan T. Gao M. Lin Y. Lai D. An effective and lightweight deep electrocardiography arrhythmia recognition model using novel special and native structural regularization techniques on cardiac signal. J. Healthc. Eng. 2011; 2022: 3408501. 10.1155/2022/3408501 35449862
    [Google Scholar]
  68. Nawabi A.K. Jinfang S. Abbasi R. Iqbal M.S. Heyat M.B.B. Akhtar F. Wu K. Twumasi B.A. Segmentation of drug-treated cell image and mitochondrial-oxidative stress using deep convolutional neural network. Oxid. Med. Cell. Longev. 2022; 2022: 5641727. 10.1155/2022/5641727 35663204
    [Google Scholar]
  69. Ali L. He Z. Cao W. Rauf H.T. Imrana Y. Bin Heyat M.B. MMDD-ensemble: A multimodal data–driven ensemble approach for Parkinson’s disease detection. Front. Neurosci. 2021 15 754058 10.3389/fnins.2021.754058 34790091
    [Google Scholar]
  70. Choi B.H. Chung G.S. Lee J.S. Jeong D.U. Park K.S. Slow-wave sleep estimation on a load-cell-installed bed: A non-constrained method. Physiol. Meas. 2009 30 11 1163 1170 10.1088/0967‑3334/30/11/002 19794234
    [Google Scholar]
  71. Yoon H. Hwang S.H. Choi J.W. Lee Y.J. Jeong D.U. Park K.S. Slow-wave sleep estimation for healthy subjects and OSA patients using R-R intervals. IEEE J. Biomed. Health Inform. 2018 22 1 119 128 10.1109/JBHI.2017.2712861 28600268
    [Google Scholar]
  72. Shahin M. Ahmed B. Hamida S.T.B. Mulaffer F.L. Glos M. Penzel T. Deep learning and insomnia: Assisting clinicians with their diagnosis. IEEE J. Biomed. Health Inform. 2017 21 6 1546 1553 10.1109/JBHI.2017.2650199 28092583
    [Google Scholar]
  73. Navarro B. López-Torres J. Andrés F. Latorre J.M. Montes M.J. Párraga I. Validation of the insomnia in the elderly scale for the detection of insomnia in older adults. Geriatr. Gerontol. Int. 2013 13 3 646 653 10.1111/j.1447‑0594.2012.00958.x 23171440
    [Google Scholar]
  74. Alsaadi S.M. McAuley J.H. Hush J.M. Bartlett D.J. Henschke N. Grunstein R.R. Maher C.G. Detecting insomnia in patients with low back pain: Accuracy of four self-report sleep measures. BMC Musculoskelet. Disord. 2013 14 1 196 10.1186/1471‑2474‑14‑196 23805978
    [Google Scholar]
  75. Binder P. Heintz A.L. Haller D.M. Favre A.S. Tudrej B. Ingrand P. Vanderkam P. Detection of adolescent suicidality in primary care: An international utility study of the bullying-insomnia-tobacco-stress test. Early Interv. Psychiatry 2020 14 1 80 86 10.1111/eip.12828 31058453
    [Google Scholar]
  76. Felder J.N. Hartman A.R. Epel E.S. Prather A.A. Pregnant patient perceptions of provider detection and treatment of insomnia. Behav. Sleep Med. 2020 18 6 787 796 10.1080/15402002.2019.1688153 31694403
    [Google Scholar]
  77. Gill J.M. Lee H. Baxter T. Reddy S.Y. Barr T. Kim H. Wang D. Mysliwiec V. A diagnosis of insomnia is associated with differential expression of sleep-regulating genes in military personnel. Biol. Res. Nurs. 2015 17 4 384 392 10.1177/1099800415575343 25767060
    [Google Scholar]
  78. Zheng X. He Y. Yin F. Liu H. Li Y. Zheng Q. Li L. Pharmacological interventions for the treatment of insomnia: Quantitative comparison of drug efficacy. Sleep Med. 2020 72 41 49 10.1016/j.sleep.2020.03.022 32544795
    [Google Scholar]
  79. Bramoweth A.D. Lederer L.G. Youk A.O. Germain A. Chinman M.J. Brief behavioral treatment for insomnia vs. cognitive behavioral therapy for insomnia: Results of a randomized noninferiority clinical trial among veterans. Behav. Ther. 2020 51 4 535 547 10.1016/j.beth.2020.02.002 32586428
    [Google Scholar]
  80. Längkvist M. Karlsson L. Loutfi A. Sleep stage classification using unsupervised feature learning. Adv. Artif. Neural Syst. 2012 2012 1 9 10.1155/2012/107046
    [Google Scholar]
  81. Boe A.J. McGee Koch L.L. O’Brien M.K. Shawen N. Rogers J.A. Lieber R.L. Reid K.J. Zee P.C. Jayaraman A. Automating sleep stage classification using wireless, wearable sensors. NPJ Digit. Med. 2019 2 1 131 10.1038/s41746‑019‑0210‑1 31886412
    [Google Scholar]
  82. Mitsukura Y. Fukunaga K. Yasui M. Mimura M. Sleep stage detection using only heart rate. Health Informatics J. 2020 26 1 376 387 10.1177/1460458219827349 30782049
    [Google Scholar]
  83. Li Q. Li Q. Liu C. Shashikumar S.P. Nemati S. Clifford G.D. Deep learning in the cross-time frequency domain for sleep staging from a single-lead electrocardiogram. Physiol. Meas. 2018 39 12 124005 10.1088/1361‑6579/aaf339 30524025
    [Google Scholar]
  84. Sridhar N. Shoeb A. Stephens P. Kharbouch A. Shimol D.B. Burkart J. Ghoreyshi A. Myers L. Deep learning for automated sleep staging using instantaneous heart rate. NPJ Digit. Med. 2020 3 1 106 10.1038/s41746‑020‑0291‑x 32885052
    [Google Scholar]
  85. Abdullah H. Penzel T. Cvetkovic D. Detection of insomnia from EEG and ECG. 15th International Conference on Biomedical Engineering (ICBME 2013): Singapore 2014 687 690 10.1007/978‑3‑319‑02913‑9_175
    [Google Scholar]
  86. Abdullah H. Penzel T. Cvetkovic D. Sleep heart rate variability analysis and k-nearest neighbours classification of primary insomnia. Int. J. Integr. Eng 2018 10 7 66 75 10.30880/ijie.2018.10.07.007
    [Google Scholar]
  87. Radha M. Fonseca P. Moreau A. Ross M. Cerny A. Anderer P. Long X. Aarts R.M. Sleep stage classification from heart-rate variability using long short-term memory neural networks. Sci. Rep. 2019 9 1 14149 10.1038/s41598‑019‑49703‑y 31578345
    [Google Scholar]
  88. Fonseca P. van Gilst M.M. Radha M. Ross M. Moreau A. Cerny A. Anderer P. Long X. van Dijk J.P. Overeem S. Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population. Sleep 2020 43 9 zsaa048 10.1093/sleep/zsaa048 32249911
    [Google Scholar]
  89. Besedovsky L. Lange T. Haack M. The sleep-immune crosstalk in health and disease. Physiol. Rev. 2019 99 3 1325 1380 10.1152/physrev.00010.2018 30920354
    [Google Scholar]
  90. Somerville W.F. Sleep and sleeplessness. BMJ 1925 1 3361 1020 1021 10.1136/bmj.1.3361.1020‑a 20772036
    [Google Scholar]
  91. Opp M.R. Cytokines and sleep. Sleep Med. Rev. 2005 9 5 355 364 10.1016/j.smrv.2005.01.002 16102986
    [Google Scholar]
  92. Vgontzas A.N. Fernandez-Mendoza J. Liao D. Bixler E.O. Insomnia with objective short sleep duration: The most biologically severe phenotype of the disorder. Sleep Med. Rev. 2013 17 4 241 254 10.1016/j.smrv.2012.09.005 23419741
    [Google Scholar]
  93. Vgontzas A.N. Zoumakis M. Papanicolaou D.A. Bixler E.O. Prolo P. Lin H.M. Vela-Bueno A. Kales A. Chrousos G.P. Chronic insomnia is associated with a shift of interleukin-6 and tumor necrosis factor secretion from night time to daytime. Metabolism 2002 51 7 887 892 10.1053/meta.2002.33357 12077736
    [Google Scholar]
  94. Burokas A. Moloney R.D. Dinan T.G. Cryan J.F. Microbiota regulation of the mammalian gut-brain axis. Adv. Appl. Microbiol. 2015 91 1 62 10.1016/bs.aambs.2015.02.001 25911232
    [Google Scholar]
  95. Floam S. Simpson N. Nemeth E. Scott-Sutherland J. Gautam S. Haack M. Sleep characteristics as predictor variables of stress systems markers in insomnia disorder. J. Sleep Res. 2015 24 3 296 304 10.1111/jsr.12259 25524529
    [Google Scholar]
  96. Savard J. Laroche L. Simard S. Ivers H. Morin C.M. Chronic insomnia and immune functioning. Psychosom. Med. 2003 65 2 211 221 10.1097/01.PSY.0000033126.22740.F3 12651988
    [Google Scholar]
  97. Ader R. Cohen N. Felten D.L. Brain, behavior, and immunity. Brain Behav. Immun. 1987 1 1 1 6 10.1016/0889‑1591(87)90001‑8 3451780
    [Google Scholar]
  98. Irwin M.R. Why sleep is important for health: A psychoneuroimmunology perspective. Annu. Rev. Psychol. 2015 66 1 143 172 10.1146/annurev‑psych‑010213‑115205 25061767
    [Google Scholar]
  99. Rahmani M. Rahmani F. Rezaei N. The brain-derived neurotrophic factor: Missing link between sleep deprivation, insomnia, and depression. Neurochem. Res. 2020 45 2 221 231 10.1007/s11064‑019‑02914‑1 31782101
    [Google Scholar]
  100. Ramanathan L. Gulyani S. Nienhuis R. Siegel J.M. Sleep deprivation decreases superoxide dismutase activity in rat hippocampus and brainstem. Neuroreport 2002 13 11 1387 1390 10.1097/00001756‑200208070‑00007 12167758
    [Google Scholar]
  101. Lopez-Jimenez F. Sert Kuniyoshi F.H. Gami A. Somers V.K. Obstructive sleep apnea: Implications for cardiac and vascular disease. Chest 2008 133 3 793 804 10.1378/chest.07‑0800 18321908
    [Google Scholar]
  102. Suzuki M. Fukuhara K. Unno M. Htwe T. Takeuchi H. Kakita T. Matsuno S. Correlation between plasma and hepatic phosphatidylcholine hydroperoxide, energy charge, and total glutathione content in ischemia reperfusion injury of rat liver. Hepatogastroenterology 2000 47 34 1082 1089 11020884
    [Google Scholar]
  103. Everson C.A. Laatsch C.D. Hogg N. Antioxidant defense responses to sleep loss and sleep recovery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005 288 2 R374 R383 10.1152/ajpregu.00565.2004 15472007
    [Google Scholar]
  104. Shaito A. Thuan D.T.B. Phu H.T. Nguyen T.H.D. Hasan H. Halabi S. Abdelhady S. Nasrallah G.K. Eid A.H. Pintus G. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front. Pharmacol. 2020 11 422 10.3389/fphar.2020.00422 32317975
    [Google Scholar]
  105. Logsdon A.F. Lucke-Wold B.P. Nguyen L. Matsumoto R.R. Turner R.C. Rosen C.L. Huber J.D. Salubrinal reduces oxidative stress, neuroinflammation and impulsive-like behavior in a rodent model of traumatic brain injury. Brain Res. 2016 1643 140 151 10.1016/j.brainres.2016.04.063 27131989
    [Google Scholar]
  106. Sarris J. Panossian A. Schweitzer I. Stough C. Scholey A. Herbal medicine for depression, anxiety and insomnia: A review of psychopharmacology and clinical evidence. Eur. Neuropsychopharmacol. 2011 21 12 841 860 10.1016/j.euroneuro.2011.04.002 21601431
    [Google Scholar]
  107. Khare C.P. Indian Medicinal Plants: An Illustrated Dictionary Springer Science & Business Media 2007
    [Google Scholar]
  108. Komaki A. Rasouli B. Shahidi S. Anxiolytic effect of Borago officinalis (Boraginaceae) extract in male rats. Avicenna J. Neuropsychophysiol. 2015 2 1 10.17795/ajnpp‑27189
    [Google Scholar]
  109. Moliner C. Cásedas G. Barros L. Finimundy T.C. Gómez-Rincón C. López V. Neuroprotective profile of edible flowers of borage (Borago officinalis L.) in two different models: Caenorhabditis elegans and neuro-2a cells. Antioxidants 2022 11 7 1244 10.3390/antiox11071244 35883735
    [Google Scholar]
  110. Zemmouri H. Ammar S. Boumendjel A. Messarah M. El Feki A. Bouaziz M. Chemical composition and antioxidant activity of Borago officinalis L. leaf extract growing in Algeria. Arab. J. Chem. 2019 12 8 1954 1963 10.1016/j.arabjc.2014.11.059
    [Google Scholar]
  111. Asad G, Redai A, Hakami A et al. Potential analgesic and anti-inflammatory effect of cuminum cyminum and Borago officinalis in rats and mice. Asian J. Pharm. Clin. Res. 2020 138 1 216 218 10.22159/ajpcr.2020.v13i1.36107
    [Google Scholar]
  112. Channa S. Dar A. Anjum S. Yaqoob M. Atta-ur-Rahman Anti-inflammatory activity of Bacopa monniera in rodents. J. Ethnopharmacol. 2006 104 1-2 286 289 10.1016/j.jep.2005.10.009 16343831
    [Google Scholar]
  113. Sahoo S. Brijesh S. Anxiolytic activity of Coriandrum sativum seeds aqueous extract on chronic restraint stressed mice and effect on brain neurotransmitters. J. Funct. Foods 2020 68 103884 10.1016/j.jff.2020.103884
    [Google Scholar]
  114. Tang E.L.H. Rajarajeswaran J. Fung S.Y. Kanthimathi M.S. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement. Altern. Med. 2013 13 1 347 10.1186/1472‑6882‑13‑347 24517259
    [Google Scholar]
  115. Salem M. Shaheen M. Tabbara A. Borjac J. Saffron extract and crocin exert anti-inflammatory and anti-oxidative effects in a repetitive mild traumatic brain injury mouse model. Sci. Rep. 2022 12 1 5004 10.1038/s41598‑022‑09109‑9 35322143
    [Google Scholar]
  116. Silva G.L.D. Luft C. Lunardelli A. Amaral R.H. Melo D.A.D.S. Donadio M.F. Nunes F.B. Azambuja M.S.D. Santana J.C. Moraes C.M.B. Mello R.O. Cassel E. Pereira M.A.D.A. Oliveira J.R.D. Antioxidant, analgesic and anti-inflammatory effects of lavender essential oil. An. Acad. Bras. Cienc. 2015 87 2 suppl 1397 1408 10.1590/0001‑3765201520150056
    [Google Scholar]
  117. Thippeswamy B.S. Mishra B. Veerapur V.P. Gupta G. Anxiolytic activity of Nymphaea alba Linn. in mice as experimental models of anxiety. Indian J. Pharmacol. 2011 43 1 50 55 10.4103/0253‑7613.75670 21455422
    [Google Scholar]
  118. Naoi M. Shamoto-Nagai M. Maruyama W. Neuroprotection of multifunctional phytochemicals as novel therapeutic strategy for neurodegenerative disorders: Antiapoptotic and antiamyloidogenic activities by modulation of cellular signal pathways. Future Neurol. 2019 14 1 FNL9 10.2217/fnl‑2018‑0028
    [Google Scholar]
  119. Zhivar S. Saeid A.M. Ghaderi-Pakdel F. Viola odorata. I Bis Z. 1951 25 328 330 10.1515/9783112359600‑112
    [Google Scholar]
  120. Nani A. Murtaza B. Sayed Khan A. Khan N.A. Hichami A. Antioxidant and anti-inflammatory potential of polyphenols contained in Mediterranean diet in obesity: Molecular mechanisms. Molecules 2021 26 4 985 10.3390/molecules26040985 33673390
    [Google Scholar]
  121. Owen P.L. Johns T. Antioxidants in medicines and spices as cardioprotective agents in Tibetan highlanders. Pharm. Biol. 2002 40 5 346 357 10.1076/phbi.40.5.346.8461
    [Google Scholar]
  122. Ahmadi M. Khalili H. Abbasian L. Ghaeli P. Effect of Valerian in preventing neuropsychiatric adverse effects of Efavirenz in HIV- positive patients: A pilot randomized, placebo-controlled clinical trial. Ann. Pharmacother. 2017 51 6 457 464 10.1177/1060028017696105 28478716
    [Google Scholar]
  123. Alzoubi K.H. Malkawi B.S. Khabour O.F. El-Elimat T. Alali F.Q. Arbutus andrachne L. reverses sleep deprivation-induced memory impairments in rats. Mol. Neurobiol. 2018 55 2 1150 1156 10.1007/s12035‑017‑0387‑8 28101814
    [Google Scholar]
  124. Hieu T.H. Dibas M. Surya Dila K.A. Sherif N.A. Hashmi M.U. Mahmoud M. Trang N.T.T. Abdullah L. Nghia T.L.B. y M.N. Hirayama K. Huy N.T. Therapeutic efficacy and safety of chamomile for state anxiety, generalized anxiety disorder, insomnia, and sleep quality: A systematic review and meta-analysis of randomized trials and quasi-randomized trials. Phytother. Res. 2019 33 6 1604 1615 10.1002/ptr.6349 31006899
    [Google Scholar]
  125. Alzobaidi N. Quasimi H. Emad N.A. Alhalmi A. Naqvi M. Bioactive compounds and traditional herbal medicine: Promising approaches for the treatment of dementia. Degener. Neurol. Neuromuscul. Dis. 2021 11 1 14 10.2147/DNND.S299589 33880073
    [Google Scholar]
  126. Barbalho S.M. Direito R. Laurindo L.F. Marton L.T. Guiguer E.L. Goulart R.A. Tofano R.J. Carvalho A.C.A. Flato U.A.P. Capelluppi Tofano V.A. Detregiachi C.R.P. Bueno P.C.S. Girio R.S.J. Araújo A.C. Ginkgo biloba in the aging process: A narrative review. Antioxidants 2022 11 3 525 10.3390/antiox11030525 35326176
    [Google Scholar]
  127. Sharma A.K. Basu I. Singh S. Efficacy and safety of ashwagandha root extract in subclinical hypothyroid patients: A double-blind, randomized placebo-controlled trial. J. Altern. Complement. Med. 2018 24 3 243 248 10.1089/acm.2017.0183 28829155
    [Google Scholar]
/content/journals/cpd/10.2174/1381612829666221201161636
Loading
/content/journals/cpd/10.2174/1381612829666221201161636
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test