Skip to content
2000
Volume 28, Issue 45
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a major public health threat to all countries worldwide. SARS-CoV-2 interactions with its receptor are the first step in the invasion of the host cell. The coronavirus spike protein (S) is crucial in binding to receptors on host cells. Additionally, targeting the SARS-CoV-2 viral receptors is considered a therapeutic option in this regard. In this review of literature, we summarized five potential host cell receptors, as host-cell surface bindings, including angiotensin-converting enzyme 2 (ACE2), neuropilin 1 (NRP-1), dipeptidyl peptidase 4 (DPP4), glucose regulated protein-78 (GRP78), and cluster of differentiation 147 (CD147) related to the SARS-CoV-2 infection. Among these targets, ACE2 was recognized as the main SARS-CoV-2 receptor, expressed at a low/moderate level in the human respiratory system, which is also involved in SARS-CoV-2 entrance, so the virus may utilize other secondary receptors. Besides ACE2, CD147 was discovered as a novel SARS-CoV-2 receptor, CD147 appears to be an alternate receptor for SARS- CoV-2 infection. NRP-1, as a single-transmembrane glycoprotein, has been recently found to operate as an entrance factor and enhance SARS Coronavirus 2 (SARS-CoV-2) infection under . DPP4, which was discovered as the first gene clustered with ACE2, may serve as a potential SARS-CoV-2 spike protein binding target. GRP78 could be recognized as a secondary receptor for SARS-CoV-2 because it is widely expressed at substantially greater levels, rather than ACE2, in bronchial epithelial cells and the respiratory mucosa. This review highlights recent literature on this topic.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612829666221123111849
2022-01-01
2024-10-09
Loading full text...

Full text loading...

References

  1. Bedford J. Enria D. Giesecke J. Heymann D.L. Ihekweazu C. Kobinger G. Lane H.C. Memish Z. Oh M. Sall A.A. Schuchat A. Ungchusak K. Wieler L.H. COVID-19: towards controlling of a pandemic. Lancet 2020 395 10229 1015 1018 10.1016/S0140‑6736(20)30673‑5 32197103
    [Google Scholar]
  2. WHO Middle East Respir Syndr coronavirus (MERS-CoV) WHO. 2020
    [Google Scholar]
  3. WHO SARS (Severe Acute Respir Syndr WHO. 2020
    [Google Scholar]
  4. Cui J. Li F. Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019 17 3 181 192 10.1038/s41579‑018‑0118‑9 30531947
    [Google Scholar]
  5. Song Z. Xu Y. Bao L. Zhang L. Yu P. Qu Y. Zhu H. Zhao W. Han Y. Qin C. From SARS to MERS, Thrusting Coronaviruses into the spotlight. Viruses 2019 11 1 59 10.3390/v11010059 30646565
    [Google Scholar]
  6. Wang N. Shi X. Jiang L. Zhang S. Wang D. Tong P. Guo D. Fu L. Cui Y. Liu X. Arledge K.C. Chen Y.H. Zhang L. Wang X. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013 23 8 986 993 10.1038/cr.2013.92 23835475
    [Google Scholar]
  7. Hoffmann M. Kleine-Weber H. Schroeder S. Krüger N. Herrler T. Erichsen S. Schiergens T.S. Herrler G. Wu N.H. Nitsche A. Müller M.A. Drosten C. Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020 181 2 271 280.e8 10.1016/j.cell.2020.02.052 32142651
    [Google Scholar]
  8. Zhou H. Gao S. Nguyen N.N. Fan M. Jin J. Liu B. Zhao L. Xiong G. Tan M. Li S. Wong L. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions. Biol. Direct 2014 9 1 5 10.1186/1745‑6150‑9‑5 24708540
    [Google Scholar]
  9. Letko M. Marzi A. Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 2020 5 4 562 569 10.1038/s41564‑020‑0688‑y 32094589
    [Google Scholar]
  10. Zhou P. Yang X.L. Wang X.G. Hu B. Zhang L. Zhang W. Si H.R. Zhu Y. Li B. Huang C.L. Chen H.D. Chen J. Luo Y. Guo H. Jiang R.D. Liu M.Q. Chen Y. Shen X.R. Wang X. Zheng X.S. Zhao K. Chen Q.J. Deng F. Liu L.L. Yan B. Zhan F.X. Wang Y.Y. Xiao G.F. Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020 579 7798 270 273 10.1038/s41586‑020‑2012‑7 32015507
    [Google Scholar]
  11. Chan C.M. Chu H. Wang Y. Wong B.H.Y. Zhao X. Zhou J. Yang D. Leung S.P. Chan J.F.W. Yeung M.L. Yan J. Lu G. Gao G.F. Yuen K.Y. Carcinoembryonic antigen-related cell adhesion molecule 5 is an important surface attachment factor that facilitates entry of middle east respiratory syndrome coronavirus. J. Virol. 2016 90 20 9114 9127 10.1128/JVI.01133‑16 27489282
    [Google Scholar]
  12. Huang Y. Yang C. Xu X. Xu W. Liu S. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 2020 41 9 1141 1149 10.1038/s41401‑020‑0485‑4 32747721
    [Google Scholar]
  13. Davies J. Randeva H. Chatha K. Hall M. Spandidos D. Karteris E. Kyrou I. Neuropilin-1 as a new potential SARS-CoV-2 infection mediator implicated in the neurologic features and central nervous system involvement of COVID-19. Mol. Med. Rep. 2020 22 5 4221 4226 10.3892/mmr.2020.11510 33000221
    [Google Scholar]
  14. Zamorano Cuervo N. Grandvaux N. ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife 2020 9 e61390 10.7554/eLife.61390 33164751
    [Google Scholar]
  15. Gheblawi M. Wang K. Viveiros A. Nguyen Q. Zhong J.C. Turner A.J. Raizada M.K. Grant M.B. Oudit G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ. Res. 2020 126 10 1456 1474 10.1161/CIRCRESAHA.120.317015 32264791
    [Google Scholar]
  16. Zhang H. Penninger J.M. Li Y. Zhong N. Slutsky A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020 46 4 586 590 10.1007/s00134‑020‑05985‑9 32125455
    [Google Scholar]
  17. Miyazaki M. Takai S. Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J. Pharmacol. Sci. 2006 100 5 391 397 10.1254/jphs.CPJ06008X 16799256
    [Google Scholar]
  18. Gross L.Z.F. Sacerdoti M. Piiper A. Zeuzem S. Leroux A.E. Biondi R.M. ACE2, the receptor that enables infection by SARS-CoV-2: Biochemistry, structure, allostery and evaluation of the potential development of ACE2 modulators. ChemMedChem 2020 15 18 1682 1690 10.1002/cmdc.202000368 32663362
    [Google Scholar]
  19. Kuba K. Imai Y. Penninger J.M. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ. J. 2013 77 2 301 308 10.1253/circj.CJ‑12‑1544 23328447
    [Google Scholar]
  20. Patel V.B. Zhong J.C. Grant M.B. Oudit G.Y. Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ. Res. 2016 118 8 1313 1326 10.1161/CIRCRESAHA.116.307708 27081112
    [Google Scholar]
  21. Turner A.J. Hiscox J.A. Hooper N.M. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol. Sci. 2004 25 6 291 294 10.1016/j.tips.2004.04.001 15165741
    [Google Scholar]
  22. Kuba K. Imai Y. Rao S. Gao H. Guo F. Guan B. Huan Y. Yang P. Zhang Y. Deng W. Bao L. Zhang B. Liu G. Wang Z. Chappell M. Liu Y. Zheng D. Leibbrandt A. Wada T. Slutsky A.S. Liu D. Qin C. Jiang C. Penninger J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005 11 8 875 879 10.1038/nm1267 16007097
    [Google Scholar]
  23. Tipnis S.R. Hooper N.M. Hyde R. Karran E. Christie G. Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000 275 43 33238 33243 10.1074/jbc.M002615200 10924499
    [Google Scholar]
  24. Der Sarkissian S. Grobe J.L. Yuan L. Narielwala D.R. Walter G.A. Katovich M.J. Raizada M.K. Cardiac overexpression of angiotensin converting enzyme 2 protects the heart from ischemia-induced pathophysiology. Hypertension 2008 51 3 712 718 10.1161/HYPERTENSIONAHA.107.100693 18250366
    [Google Scholar]
  25. Wong D.W. Oudit G.Y. Reich H. Kassiri Z. Zhou J. Liu Q.C. Backx P.H. Penninger J.M. Herzenberg A.M. Scholey J.W. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am. J. Pathol. 2007 171 2 438 451 10.2353/ajpath.2007.060977 17600118
    [Google Scholar]
  26. Rentzsch B. Todiras M. Iliescu R. Popova E. Campos L.A. Oliveira M.L. Baltatu O.C. Santos R.A. Bader M. Transgenic angiotensin- converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 2008 52 5 967 973 10.1161/HYPERTENSIONAHA.108.114322 18809792
    [Google Scholar]
  27. Kuba K. Imai Y. Ohto-Nakanishi T. Penninger J.M. Trilogy of ACE2: A peptidase in the renin–angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol. Ther. 2010 128 1 119 128 10.1016/j.pharmthera.2010.06.003 20599443
    [Google Scholar]
  28. Verdecchia P. Cavallini C. Spanevello A. Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med. 2020 76 14 20 10.1016/j.ejim.2020.04.037 32336612
    [Google Scholar]
  29. Meng J. Xiao G. Zhang J. He X. Ou M. Bi J. Yang R. Di W. Wang Z. Li Z. Gao H. Liu L. Zhang G. Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension. Emerg. Microbes Infect. 2020 9 1 757 760 10.1080/22221751.2020.1746200 32228222
    [Google Scholar]
  30. Zhang P. Zhu L. Cai J. Lei F. Qin J.J. Xie J. Liu Y.M. Zhao Y.C. Huang X. Lin L. Xia M. Chen M.M. Cheng X. Zhang X. Guo D. Peng Y. Ji Y.X. Chen J. She Z.G. Wang Y. Xu Q. Tan R. Wang H. Lin J. Luo P. Fu S. Cai H. Ye P. Xiao B. Mao W. Liu L. Yan Y. Liu M. Chen M. Zhang X.J. Wang X. Touyz R.M. Xia J. Zhang B.H. Huang X. Yuan Y. Loomba R. Liu P.P. Li H. Association of inpatient use of angiotensin-converting enzyme inhibitors and angiotensin ii receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circ. Res. 2020 126 12 1671 1681 10.1161/CIRCRESAHA.120.317134 32302265
    [Google Scholar]
  31. Bornstein S.R. Dalan R. Hopkins D. Mingrone G. Boehm B.O. Endocrine and metabolic link to coronavirus infection. Nat. Rev. Endocrinol. 2020 16 6 297 298 10.1038/s41574‑020‑0353‑9 32242089
    [Google Scholar]
  32. Khera R. Clark C. Lu Y. Guo Y. Ren S. Truax B. Association of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers with the risk of hospitalization and death in hypertensive patients with coronavirus disease-19. J Am Heart Assoc 2021
    [Google Scholar]
  33. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev. Res. 2020 81 5 537 540 10.1002/ddr.21656 32129518
    [Google Scholar]
  34. Bloch M.J. Renin-angiotensin system blockade in COVID-19. J. Am. Coll. Cardiol. 2020 76 3 277 279 10.1016/j.jacc.2020.06.003 32674791
    [Google Scholar]
  35. Vaduganathan M. Vardeny O. Michel T. McMurray J.J.V. Pfeffer M.A. Solomon S.D. Renin–angiotensin–aldosterone system inhibitors in patients with COVID-19. N. Engl. J. Med. 2020 382 17 1653 1659 10.1056/NEJMsr2005760 32227760
    [Google Scholar]
  36. Kreutz R. Algharably E.A.E.H. Azizi M. Dobrowolski P. Guzik T. Januszewicz A. Persu A. Prejbisz A. Riemer T.G. Wang J.G. Burnier M. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19. Cardiovasc. Res. 2020 116 10 1688 1699 10.1093/cvr/cvaa097 32293003
    [Google Scholar]
  37. Talreja H. Tan J. Dawes M. Supershad S. Rabindranath K. Fisher J. Valappil S. van der Merwe V. Wong L. van der Merwe W. Paton J. A consensus statement on the use of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in relation to COVID-19 (corona virus disease 2019). N. Z. Med. J. 2020 133 1512 85 87 32242182
    [Google Scholar]
  38. Stoian A.P. Banerjee Y. Rizvi A.A. Rizzo M. Diabetes and the COVID-19 pandemic: How insights from recent experience might guide Future management. Metab. Syndr. Relat. Disord. 2020 18 4 173 175 10.1089/met.2020.0037 32271125
    [Google Scholar]
  39. Muniyappa R. Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2020 318 5 E736 E741 10.1152/ajpendo.00124.2020 32228322
    [Google Scholar]
  40. Chan K.K. Dorosky D. Sharma P. Abbasi S.A. Dye J.M. Kranz D.M. Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science 2020 369 6508 1261 5
    [Google Scholar]
  41. Monteil V. Kwon H. Prado P. Hagelkrüys A. Wimmer R.A. Stahl M. Leopoldi A. Garreta E. Hurtado del Pozo C. Prosper F. Romero J.P. Wirnsberger G. Zhang H. Slutsky A.S. Conder R. Montserrat N. Mirazimi A. Penninger J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020 181 4 905 913.e7 10.1016/j.cell.2020.04.004 32333836
    [Google Scholar]
  42. Batlle D. Wysocki J. Satchell K. Soluble angiotensin-converting enzyme 2: A potential approach for coronavirus infection therapy? Clin. Sci. (Lond.) 2020 134 5 543 545 10.1042/CS20200163 32167153
    [Google Scholar]
  43. Li F. Coronavirus spike receptor-binding domain complexed with receptor. Science 2005 309 5742 1864 8 10.1126/science.1116480
    [Google Scholar]
  44. Li W. Moore M.J. Vasilieva N. Sui J. Wong S.K. Berne M.A. Somasundaran M. Sullivan J.L. Luzuriaga K. Greenough T.C. Choe H. Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003 426 6965 450 454 10.1038/nature02145 14647384
    [Google Scholar]
  45. Imai Y. Kuba K. Rao S. Huan Y. Guo F. Guan B. Yang P. Sarao R. Wada T. Leong-Poi H. Crackower M.A. Fukamizu A. Hui C.C. Hein L. Uhlig S. Slutsky A.S. Jiang C. Penninger J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005 436 7047 112 116 10.1038/nature03712 16001071
    [Google Scholar]
  46. Zhang R. Pan Y. Fanelli V. Wu S. Luo A.A. Islam D. Han B. Mao P. Ghazarian M. Zeng W. Spieth P.M. Wang D. Khang J. Mo H. Liu X. Uhlig S. Liu M. Laffey J. Slutsky A.S. Li Y. Zhang H. Mechanical stress and the induction of lung fibrosis via the midkine signaling pathway. Am. J. Respir. Crit. Care Med. 2015 192 3 315 323 10.1164/rccm.201412‑2326OC 25945397
    [Google Scholar]
  47. Wösten-van Asperen R.M. Lutter R. Specht P.A. Moll G.N. van Woensel J.B. van der Loos C.M. van Goor H. Kamilic J. Florquin S. Bos A.P. Acute respiratory distress syndrome leads to reduced ratio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin II receptor antagonist. J. Pathol. 2011 225 4 618 627 10.1002/path.2987 22009550
    [Google Scholar]
  48. Monteil V. Dyczynski M. Lauschke V.M. Kwon H. Wirnsberger G. Youhanna S. Zhang H. Slutsky A.S. Hurtado del Pozo C. Horn M. Montserrat N. Penninger J.M. Mirazimi A. Human soluble ACE2 improves the effect of remdesivir in SARS-CoV-2 infection. EMBO Mol. Med. 2021 13 1 e13426 10.15252/emmm.202013426 33179852
    [Google Scholar]
  49. Khan A. Benthin C. Zeno B. Albertson T.E. Boyd J. Christie J.D. Hall R. Poirier G. Ronco J.J. Tidswell M. Hardes K. Powley W.M. Wright T.J. Siederer S.K. Fairman D.A. Lipson D.A. Bayliffe A.I. Lazaar A.L. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit. Care 2017 21 1 234 10.1186/s13054‑017‑1823‑x 28877748
    [Google Scholar]
  50. Haschke M. Schuster M. Poglitsch M. Loibner H. Salzberg M. Bruggisser M. Penninger J. Krähenbühl S. Pharmacokinetics and pharmacodynamics of recombinant human angiotensin-converting enzyme 2 in healthy human subjects. Clin. Pharmacokinet. 2013 52 9 783 792 10.1007/s40262‑013‑0072‑7 23681967
    [Google Scholar]
  51. Wang K. Chen W. Zhang Z. Deng Y. Lian J.Q. Du P. Wei D. Zhang Y. Sun X.X. Gong L. Yang X. He L. Zhang L. Yang Z. Geng J.J. Chen R. Zhang H. Wang B. Zhu Y.M. Nan G. Jiang J.L. Li L. Wu J. Lin P. Huang W. Xie L. Zheng Z.H. Zhang K. Miao J.L. Cui H.Y. Huang M. Zhang J. Fu L. Yang X.M. Zhao Z. Sun S. Gu H. Wang Z. Wang C.F. Lu Y. Liu Y.Y. Wang Q.Y. Bian H. Zhu P. Chen Z.N. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct. Target. Ther. 2020 5 1 283 10.1038/s41392‑020‑00426‑x 33277466
    [Google Scholar]
  52. Cui J. Huang W. Wu B. Jin J. Jing L. Shi W.P. Liu Z.Y. Yuan L. Luo D. Li L. Chen Z.N. Jiang J.L. N-glycosylation by N-acetylglucosaminyltransferase V enhances the interaction of CD147/basigin with integrin β1 and promotes HCC metastasis. J. Pathol. 2018 245 1 41 52 10.1002/path.5054 29431199
    [Google Scholar]
  53. Castro A.P.V. Carvalho T.M.U. Moussatché N. Damaso C.R.A. Redistribution of cyclophilin A to viral factories during vaccinia virus infection and its incorporation into mature particles. J. Virol. 2003 77 16 9052 9068 10.1128/JVI.77.16.9052‑9068.2003 12885921
    [Google Scholar]
  54. Huang Q. Li J. Xing J. Li W. Li H. Ke X. Zhang J. Ren T. Shang Y. Yang H. Jiang J. Chen Z. CD147 promotes reprogramming of glucose metabolism and cell proliferation in HCC cells by inhibiting the p53-dependent signaling pathway. J. Hepatol. 2014 61 4 859 866 10.1016/j.jhep.2014.04.035 24801417
    [Google Scholar]
  55. Zhang M.Y. Zhang Y. Wu X.D. Zhang K. Lin P. Bian H.J. Qin M.M. Huang W. Wei D. Zhang Z. Wu J. Chen R. Feng F. Wang B. Nan G. Zhu P. Chen Z.N. Disrupting CD147-RAP2 interaction abrogates erythrocyte invasion by Plasmodium falciparum. Blood 2018 131 10 1111 1121 10.1182/blood‑2017‑08‑802918 29352039
    [Google Scholar]
  56. Lu M. Wu J. Hao Z.W. Shang Y.K. Xu J. Nan G. Li X. Chen Z.N. Bian H. Basolateral CD147 induces hepatocyte polarity loss by E-cadherin ubiquitination and degradation in hepatocellular carcinoma progress. Hepatology 2018 68 1 317 332 10.1002/hep.29798 29356040
    [Google Scholar]
  57. Zhao P. Zhang W. Wang S.J. Yu X.L. Tang J. Huang W. Li Y. Cui H.Y. Guo Y.S. Tavernier J. Zhang S.H. Jiang J.L. Chen Z.N. HAb18G/CD147 promotes cell motility by regulating annexin II-activated RhoA and Rac1 signaling pathways in hepatocellular carcinoma cells. Hepatology 2011 54 6 2012 2024 10.1002/hep.24592 21809360
    [Google Scholar]
  58. Su H. Yang Y. The roles of CyPA and CD147 in cardiac remodelling. Exp. Mol. Pathol. 2018 104 3 222 226 10.1016/j.yexmp.2018.05.001 29772453
    [Google Scholar]
  59. Kosugi T. Maeda K. Sato W. Maruyama S. Kadomatsu K. CD147 (EMMPRIN/Basigin) in kidney diseases: from an inflammation and immune system viewpoint. Nephrol. Dial. Transplant. 2015 30 7 1097 1103 10.1093/ndt/gfu302 25248362
    [Google Scholar]
  60. Chen Z. Mi L. Xu J. Yu J. Wang X. Jiang J. Xing J. Shang P. Qian A. Li Y. Shaw P.X. Wang J. Duan S. Ding J. Fan C. Zhang Y. Yang Y. Yu X. Feng Q. Li B. Yao X. Zhang Z. Li L. Xue X. Zhu P. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J. Infect. Dis. 2005 191 5 755 760 10.1086/427811 15688292
    [Google Scholar]
  61. Ulrich H. Pillat M.M. CD147 as a target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement. Stem Cell Rev. Rep. 2020 16 3 434 440 10.1007/s12015‑020‑09976‑7 32307653
    [Google Scholar]
  62. Zhai Y. Wu B. Li J. Yao X. Zhu P. Chen Z. CD147 promotes IKK/IκB/NF-κB pathway to resist TNF-induced apoptosis in rheumatoid arthritis synovial fibroblasts. J. Mol. Med. (Berl.) 2016 94 1 71 82 10.1007/s00109‑015‑1334‑7 26296700
    [Google Scholar]
  63. Su H. Li J. Chen T. Li N. Xiao J. Wang S. Guo X. Yang Y. Bu P. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway. Mol. Cell. Biochem. 2016 422 1-2 85 95 10.1007/s11010‑016‑2808‑9 27590243
    [Google Scholar]
  64. de Farias T da SM. Melatonin supplementation attenuates the pro-inflammatory adipokines expression in visceral fat from obese mice induced by a high-fat diet. Cells 2019 8 9 1041
    [Google Scholar]
  65. Liu C. von Brunn A. Zhu D. Cyclophilin A and CD147: novel therapeutic targets for the treatment of COVID-19. Med Drug Discov 2020 7 100056
    [Google Scholar]
  66. Leonardi A. Rosani U. Brun P. Ocular surface expression of SARS-CoV-2 receptors. Ocul. Immunol. Inflamm. 2020 28 5 735 738 10.1080/09273948.2020.1772314 32589459
    [Google Scholar]
  67. Aguiar J.A. Tremblay B.J.M. Mansfield M.J. Woody O. Lobb B. Banerjee A. Chandiramohan A. Tiessen N. Cao Q. Dvorkin-Gheva A. Revill S. Miller M.S. Carlsten C. Organ L. Joseph C. John A. Hanson P. Austin R.C. McManus B.M. Jenkins G. Mossman K. Ask K. Doxey A.C. Hirota J.A. Gene expression and in situ protein profiling of candidate SARS-CoV-2 receptors in human airway epithelial cells and lung tissue. Eur. Respir. J. 2020 56 3 2001123 10.1183/13993003.01123‑2020 32675206
    [Google Scholar]
  68. Radzikowska U. Ding M. Tan G. Zhakparov D. Peng Y. Wawrzyniak P. Wang M. Li S. Morita H. Altunbulakli C. Reiger M. Neumann A.U. Lunjani N. Traidl-Hoffmann C. Nadeau K.C. O’Mahony L. Akdis C. Sokolowska M. Distribution of ACE2, CD147, CD26, and other SARS-CoV-2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID-19 risk factors. Allergy 2020 75 11 2829 2845 10.1111/all.14429 32496587
    [Google Scholar]
  69. Jobe A. Vijayan R. Neuropilins: C-end rule peptides and their association with nociception and COVID-19. Comput. Struct. Biotechnol. J. 2021 19 1889 1895 10.1016/j.csbj.2021.03.025 33815686
    [Google Scholar]
  70. Cantuti-Castelvetri L. Ojha R. Pedro L.D. Djannatian M. Franz J. Kuivanen S. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science (80-) 2020 370 6518 856 60
    [Google Scholar]
  71. Daly J.L. Simonetti B. Klein K. Chen K-E. Williamson M.K. Antón-Plágaro C. Neuropilin-1 is a host factor for SARS-CoV- 2 infection. Science 2020 370 6518 861 5
    [Google Scholar]
  72. Gudowska-Sawczuk M. Mroczko B. The role of neuropilin-1 (NRP-1) in SARS-CoV-2 infection. J. Clin. Med. 2021 10 13 2772 2730 10.3390/jcm10132772 34202613
    [Google Scholar]
  73. Papageorgiou A.C. Mohsin I. The SARS-CoV-2 spike glycoprotein as a drug and vaccine target: Structural insights into its complexes with ACE2 and antibodies. Cells 2020 9 11 2343 10.3390/cells9112343 33105869
    [Google Scholar]
  74. Coutard B. Valle C. de Lamballerie X. Canard B. Seidah N.G. Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020 176 104742 10.1016/j.antiviral.2020.104742 32057769
    [Google Scholar]
  75. Teesalu T. Sugahara K.N. Kotamraju V.R. Ruoslahti E. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. USA 2009 106 38 16157 16162 10.1073/pnas.0908201106 19805273
    [Google Scholar]
  76. Murgolo N. Therien A.G. Howell B. Klein D. Koeplinger K. Lieberman L.A. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLOS Pathog 2021 17 2 e1009225
    [Google Scholar]
  77. Kielian M. Enhancing host cell infection by SARS-CoV-2. Science 2020 370 6518 765 6
    [Google Scholar]
  78. Boesveldt S. Postma E.M. Boak D. Welge-Luessen A. Schöpf V. Mainland J.D. Martens J. Ngai J. Duffy V.B. Anosmia-A Clinical Review. Chem. Senses 2017 42 7 513 523 10.1093/chemse/bjx025 28531300
    [Google Scholar]
  79. Ramani A. Müller L. Ostermann P.N. Gabriel E. Abida-Islam P. Müller-Schiffmann A. Mariappan A. Goureau O. Gruell H. Walker A. Andrée M. Hauka S. Houwaart T. Dilthey A. Wohlgemuth K. Omran H. Klein F. Wieczorek D. Adams O. Timm J. Korth C. Schaal H. Gopalakrishnan J. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 2020 39 20 e106230 10.15252/embj.2020106230 32876341
    [Google Scholar]
  80. Mayi B.S. Leibowitz J.A. Woods A.T. Ammon K.A. Liu A.E. Raja A. The role of Neuropilin-1 in COVID-19. PLoS Pathog. 2021 17 1 e1009153 10.1371/journal.ppat.1009153 33395426
    [Google Scholar]
  81. Qi F. Qian S. Zhang S. Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Biophys. Res. Commun. 2020 526 1 135 140 10.1016/j.bbrc.2020.03.044 32199615
    [Google Scholar]
  82. Singh A. Singh R. Dipeptidyl-peptidase-4 inhibitors in type 2 diabetes and COVID-19: From a potential repurposed agent to a useful treatment option. Journal of Diabetology 2020 11 3 131 10.4103/JOD.JOD_53_20
    [Google Scholar]
  83. Dalan R. Is DPP4 inhibition a comrade or adversary in COVID-19 infection. Diabetes Res. Clin. Pract. 2020 164 108216 10.1016/j.diabres.2020.108216 32416120
    [Google Scholar]
  84. Scheen A.J. Marre M. Thivolet C. Prognostic factors in patients with diabetes hospitalized for COVID-19: Findings from the CORONADO study and other recent reports. Diabetes Metab. 2020 46 4 265 271 10.1016/j.diabet.2020.05.008 32447101
    [Google Scholar]
  85. Stoian A.P. Papanas N. Prazny M. Rizvi A.A. Rizzo M. Incretin-based therapies role in COVID-19 era: Evolving insights. J. Cardiovasc. Pharmacol. Ther. 2020 25 6 494 496 10.1177/1074248420937868 32618198
    [Google Scholar]
  86. Klemann C. Wagner L. Stephan M. von Hörsten S. Cut to the chase: a review of CD26/dipeptidyl peptidase-4's (DPP4) entanglement in the immune system. Clin. Exp. Immunol. 2016 185 1 1 21 10.1111/cei.12781 26919392
    [Google Scholar]
  87. Deacon C.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol 2019 10
    [Google Scholar]
  88. Ussher J.R. Drucker D.J. Cardiovascular biology of the incretin system. Endocr. Rev. 2012 33 2 187 215 10.1210/er.2011‑1052 22323472
    [Google Scholar]
  89. Scheen A.J. Cardiovascular effects of gliptins. Nat. Rev. Cardiol. 2013 10 2 73 84 10.1038/nrcardio.2012.183 23296071
    [Google Scholar]
  90. Raj V.S. Mou H. Smits S.L. Dekkers D.H.W. Müller M.A. Dijkman R. Muth D. Demmers J.A.A. Zaki A. Fouchier R.A.M. Thiel V. Drosten C. Rottier P.J.M. Osterhaus A.D.M.E. Bosch B.J. Haagmans B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013 495 7440 251 254 10.1038/nature12005 23486063
    [Google Scholar]
  91. Vankadari N. Wilce J.A. Emerging COVID-19 coronavirus: Glycan shield and structure prediction of spike glycoprotein and its interaction with human CD26. Emerg. Microbes Infect. 2020 9 1 601 604 10.1080/22221751.2020.1739565 32178593
    [Google Scholar]
  92. Sesti G. Avogaro A. Belcastro S. Bonora B.M. Croci M. Daniele G. Dauriz M. Dotta F. Formichi C. Frontoni S. Invitti C. Orsi E. Picconi F. Resi V. Bonora E. Purrello F. Ten years of experience with DPP-4 inhibitors for the treatment of type 2 diabetes mellitus. Acta Diabetol. 2019 56 6 605 617 10.1007/s00592‑018‑1271‑3 30603867
    [Google Scholar]
  93. Norouzi M. Norouzi S. Ruggiero A. Khan M.S. Myers S. Kavanagh K. Vemuri R. Type-2 diabetes as a risk factor for severe COVID-19 infection. Microorganisms 2021 9 6 1211 10.3390/microorganisms9061211 34205044
    [Google Scholar]
  94. Scheen A.J. DPP-4 inhibition and COVID-19: From initial concerns to recent expectations. Diabetes Metab. 2021 47 2 101213 10.1016/j.diabet.2020.11.005 33249199
    [Google Scholar]
  95. Huang C. Wang Y. Li X. Ren L. Zhao J. Hu Y. Zhang L. Fan G. Xu J. Gu X. Cheng Z. Yu T. Xia J. Wei Y. Wu W. Xie X. Yin W. Li H. Liu M. Xiao Y. Gao H. Guo L. Xie J. Wang G. Jiang R. Gao Z. Jin Q. Wang J. Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020 395 10223 497 506 10.1016/S0140‑6736(20)30183‑5 31986264
    [Google Scholar]
  96. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat. Rev. Immunol. 2020 20 5 277 10.1038/s41577‑020‑0305‑6 32249847
    [Google Scholar]
  97. Kagal U.A. Angadi N.B. Matule S.M. Effect of dipeptidyl peptidase 4 inhibitors on acute and subacute models of inflammation in male Wistar rats: An experimental study. Int J Appl basic Med Res 7 1 26 31
    [Google Scholar]
  98. Birnbaum Y. Bajaj M. Qian J. Ye Y. Dipeptidyl peptidase-4 inhibition by Saxagliptin prevents inflammation and renal injury by targeting the Nlrp3/ASC inflammasome. BMJ Open Diabetes Res. Care 2016 4 1 e000227 10.1136/bmjdrc‑2016‑000227 27547413
    [Google Scholar]
  99. Mozafari N. Azadi S. Mehdi-Alamdarlou S. Ashrafi H. Azadi A. Inflammation: A bridge between diabetes and COVID-19, and possible management with sitagliptin. Med. Hypotheses 2020 143 110111 10.1016/j.mehy.2020.110111 32721805
    [Google Scholar]
  100. Dastan F. Abedini A. Shahabi S. Kiani A. Saffaei A. Zare A. Sitagliptin repositioning in SARS-CoV-2: Effects on ACE-2, CD-26, and inflammatory cytokine storms in the lung. Iran. J. Allergy Asthma Immunol. 2020 19 S1 10 12 10.18502/ijaai.v19i(s1.r1).2849 32534505
    [Google Scholar]
  101. Bonora B.M. Avogaro A. Fadini G.P. Disentangling conflicting evidence on DPP-4 inhibitors and outcomes of COVID-19: Narrative review and meta-analysis. J. Endocrinol. Invest. 2021 44 7 1379 1386 10.1007/s40618‑021‑01515‑6 33512688
    [Google Scholar]
  102. Tomovic K. Lazarevic J. Kocic G. Deljanin-Ilic M. Anderluh M. Smelcerovic A. Mechanisms and pathways of anti-inflammatory activity of DPP-4 inhibitors in cardiovascular and renal protection. Med. Res. Rev. 2019 39 1 404 422 10.1002/med.21513 29806214
    [Google Scholar]
  103. Zhu L. She Z.G. Cheng X. Qin J.J. Zhang X.J. Cai J. Lei F. Wang H. Xie J. Wang W. Li H. Zhang P. Song X. Chen X. Xiang M. Zhang C. Bai L. Xiang D. Chen M.M. Liu Y. Yan Y. Liu M. Mao W. Zou J. Liu L. Chen G. Luo P. Xiao B. Zhang C. Zhang Z. Lu Z. Wang J. Lu H. Xia X. Wang D. Liao X. Peng G. Ye P. Yang J. Yuan Y. Huang X. Guo J. Zhang B.H. Li H. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 2020 31 6 1068 1077.e3 10.1016/j.cmet.2020.04.021 32369736
    [Google Scholar]
  104. Fagerberg L. Hallström B.M. Oksvold P. Kampf C. Djureinovic D. Odeberg J. Habuka M. Tahmasebpoor S. Danielsson A. Edlund K. Asplund A. Sjöstedt E. Lundberg E. Szigyarto C.A.K. Skogs M. Takanen J.O. Berling H. Tegel H. Mulder J. Nilsson P. Schwenk J.M. Lindskog C. Danielsson F. Mardinoglu A. Sivertsson Å. von Feilitzen K. Forsberg M. Zwahlen M. Olsson I. Navani S. Huss M. Nielsen J. Ponten F. Uhlén M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics 2014 13 2 397 406 10.1074/mcp.M113.035600 24309898
    [Google Scholar]
  105. Li J. Lee A. Stress induction of GRP78/BiP and its role in cancer. Curr. Mol. Med. 2006 6 1 45 54 10.2174/156652406775574523 16472112
    [Google Scholar]
  106. Quinones Q.J. de Ridder G.G. Pizzo S.V. GRP78: a chaperone with diverse roles beyond the endoplasmic reticulum. Histol. Histopathol. 2008 23 11 1409 1416 18785123
    [Google Scholar]
  107. Lee A.S. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 2005 35 4 373 381 10.1016/j.ymeth.2004.10.010 15804610
    [Google Scholar]
  108. Rao R.V. Peel A. Logvinova A. del Rio G. Hermel E. Yokota T. Goldsmith P.C. Ellerby L.M. Ellerby H.M. Bredesen D.E. Coupling endoplasmic reticulum stress to the cell death program: role of the ER chaperone GRP78. FEBS Lett. 2002 514 2-3 122 128 10.1016/S0014‑5793(02)02289‑5 11943137
    [Google Scholar]
  109. Lee A.S. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat. Rev. Cancer 2014 14 4 263 276 10.1038/nrc3701 24658275
    [Google Scholar]
  110. Ge R. Kao C. Cell surface GRP78 as a death receptor and an anticancer drug target. Cancers 2019 11 11 1787 10.3390/cancers11111787 31766302
    [Google Scholar]
  111. Rangel HR Ortega JT Maksoud S Pujol FH Serrano ML Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier connect, the company’s public news and information. 2020
    [Google Scholar]
  112. Ibrahim I.M. Abdelmalek D.H. Elfiky A.A. GRP78: A cell’s response to stress. Life Sci. 2019 226 156 163 10.1016/j.lfs.2019.04.022 30978349
    [Google Scholar]
  113. Ibrahim I.M. Abdelmalek D.H. Elshahat M.E. Elfiky A.A. COVID-19 spike-host cell receptor GRP78 binding site prediction. J. Infect. 2020 80 5 554 562 10.1016/j.jinf.2020.02.026 32169481
    [Google Scholar]
  114. Carlos A.J. Ha D.P. Yeh D-W. Van Krieken R. Gill P. Machida K. GRP78 binds SARS-CoV-2 spike protein and ACE2 and GRP78 depleting antibody blocks viral entry and infection in vitro. BioRxiv 2021 2021.01.20.427368 10.1101/2021.01.20.427368
    [Google Scholar]
  115. Wang S. Qiu Z. Hou Y. Deng X. Xu W. Zheng T. Wu P. Xie S. Bian W. Zhang C. Sun Z. Liu K. Shan C. Lin A. Jiang S. Xie Y. Zhou Q. Lu L. Huang J. Li X. AXL is a candidate receptor for SARS-CoV-2 that promotes infection of pulmonary and bronchial epithelial cells. Cell Res. 2021 31 2 126 140 10.1038/s41422‑020‑00460‑y 33420426
    [Google Scholar]
  116. Christianson H.C. Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 2014 35 51 55 10.1016/j.matbio.2013.10.004 24145152
    [Google Scholar]
  117. Clausen T.M. Sandoval D.R. Spliid C.B. Pihl J. Perrett H.R. Painter C.D. Narayanan A. Majowicz S.A. Kwong E.M. McVicar R.N. Thacker B.E. Glass C.A. Yang Z. Torres J.L. Golden G.J. Bartels P.L. Porell R.N. Garretson A.F. Laubach L. Feldman J. Yin X. Pu Y. Hauser B.M. Caradonna T.M. Kellman B.P. Martino C. Gordts P.L.S.M. Chanda S.K. Schmidt A.G. Godula K. Leibel S.L. Jose J. Corbett K.D. Ward A.B. Carlin A.F. Esko J.D. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020 183 4 1043 1057.e15 10.1016/j.cell.2020.09.033 32970989
    [Google Scholar]
  118. Smits N.C. Kurup S. Rops A.L. ten Dam G.B. Massuger L.F. Hafmans T. Turnbull J.E. Spillmann D. Li J. Kennel S.J. Wall J.S. Shworak N.W. Dekhuijzen P.N.R. van der Vlag J. van Kuppevelt T.H. The heparan sulfate motif (GlcNS6S-IdoA2S)3, common in heparin, has a strict topography and is involved in cell behavior and disease. J. Biol. Chem. 2010 285 52 41143 41151 10.1074/jbc.M110.153791 20837479
    [Google Scholar]
  119. Zhou X. Yang G. Guan F. Biological functions and analytical strategies of sialic acids in tumor. Cells 2020 9 2 273 10.3390/cells9020273 31979120
    [Google Scholar]
  120. Li W. Hulswit R.J.G. Widjaja I. Raj V.S. McBride R. Peng W. Widagdo W. Tortorici M.A. van Dieren B. Lang Y. van Lent J.W.M. Paulson J.C. de Haan C.A.M. de Groot R.J. van Kuppeveld F.J.M. Haagmans B.L. Bosch B.J. Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc. Natl. Acad. Sci. USA 2017 114 40 E8508 E8517 10.1073/pnas.1712592114 28923942
    [Google Scholar]
  121. Nguyen L. McCord K.A. Bui D.T. Bouwman K.M. Kitova E.N. Elaish M. Kumawat D. Daskhan G.C. Tomris I. Han L. Chopra P. Yang T.J. Willows S.D. Mason A.L. Mahal L.K. Lowary T.L. West L.J. Hsu S.T.D. Hobman T. Tompkins S.M. Boons G.J. de Vries R.P. Macauley M.S. Klassen J.S. Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nat. Chem. Biol. 2022 18 1 81 90 10.1038/s41589‑021‑00924‑1 34754101
    [Google Scholar]
/content/journals/cpd/10.2174/1381612829666221123111849
Loading
/content/journals/cpd/10.2174/1381612829666221123111849
Loading

Data & Media loading...

  • Article Type: Review Article
Keyword(s): ACE2; CD147; COVID-19; DPP4; GRP78; neuropilin 1; SARS-CoV-2; spike protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test