Skip to content
2000
Volume 28, Issue 11
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Osteoporosis is a common localized or systemic skeletal illness in the clinic, characterized by bone production weakness and increased bone resorption, resulting in a reduction in bone mineral density (BMD), and affecting mostly postmenopausal women. The risk of osteoporosis or even osteoporotic fracture increases as age increases, putting more pressure on society and families. Although anti-osteoporosis drugs have been developed, some side effects are still observed in the treatment group. Hence the need for more reasonable therapeutic strategies. Exosomes are nanosized extracellular vesicles (EVs) secreted virtually by all types of cells in vivo, which play an important role in intercellular communication. Compared with conventional drugs and stem cells transplantation therapy, exosomes have apparent advantages of lower toxicity and immunogenicity. Exosomes contain many functional molecules, such as proteins, lipids, mRNAs, microRNAs (miRNAs), which can be transferred into recipient cells to regulate a series of signaling pathways and influence physiological and pathological behavior. In this review, we briefly summarize the current knowledge of exosomes and the therapeutic potential of exosomal miRNAs derived from mesenchymal stem cells (MSCs), osteoblasts, osteoclasts, and macrophages in osteoporosis. Finally, a prospect of new treatment strategies for osteoporosis using new biomaterial scaffolds combined with exosomes is also given.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612828666220128104206
2022-03-01
2025-08-21
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612828666220128104206
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test