Skip to content
2000
Volume 27, Issue 41
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background: Prostate cancer (PCa) is a commonly diagnosed malignant cancer and is the second- highest cause of cancer death in men worldwide. Enzalutamide is the second-generation inhibitor of androgen receptor signaling and is the fundamental drug for the treatment of advanced PCa. However, the disease will eventually progress to metastatic castration-resistant prostate cancer (CRPC) and aggressive neuroendocrine prostate cancer (NEPC) because of androgen-deprivation therapy (ADT) resistance. The aim of the study was to investigate the role of long non-coding RNA (lncRNA) AFAP1-AS1 in ADT resistance. Methods: Quantitative real-time PCR analysis (qPCR) was used to assess the expression of AFAP1-AS1 in PCa cell lines and tissues. Cell proliferation and invasion were assessed after AFAP1-AS1 knockdown using Cell Counting Kit (CCK)-8 and Transwell assay, respectively. A dual-luciferase reporter gene assay was carried out to validate the regulatory relationship among AFAP1-AS1, microRNA (miR)-15b, and insulin-like growth factor1 receptor (IGF1R). Results: AFAP1-AS1 level was markedly increased in castration-resistant C4-2 cells and NE-like cells (PC3, DU145, and NCI-H660), compared with androgen-sensitive LNCaP cells. Enzalutamide treatment increased the expression of AFAP1-AS1 in vitro and in vivo. Functionally, AFAP1-AS1 knockdown repressed tumor cell proliferation and invasion. Mechanistically, AFAP1-AS1 functioned as an oncogene in PCa through binding to miR-15b and destroying its tumor suppressor function. Finally, we identified that AFAP1-AS1 up-regulated IGF1R expression by competitively binding to miR-15b to de-repress IGF1R. Conclusion: AFAP1-AS1 facilitates PCa progression by regulating miR-15b/IGF1R axis, indicating that AFAP1-AS1 may serve as a diagnostic biomarker and therapeutic target for PCa.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612827666210612052317
2021-11-01
2025-04-10
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612827666210612052317
Loading

  • Article Type:
    Research Article
Keyword(s): ADT; AFAP1-AS1; ceRNA; IGF1R; miR-15b; Prostate cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test