
Full text loading...
Background: Drug-Target interactions are vital for drug design and drug repositioning. However, traditional lab experiments are both expensive and time-consuming. Various computational methods which applied machine learning techniques performed efficiently and effectively in the field. Results: The machine learning methods can be divided into three categories basically: Supervised methods, Semi-Supervised methods and Unsupervised methods. We reviewed recent representative methods applying machine learning techniques of each category in DTIs and summarized a brief list of databases frequently used in drug discovery. In addition, we compared the advantages and limitations of these methods in each category. Conclusion: Every prediction model has both strengths and weaknesses and should be adopted in proper ways. Three major problems in DTIs prediction including the lack of nonreactive drug-target pairs data sets, over optimistic results due to the biases and the exploiting of regression models on DTIs prediction should be seriously considered.