Skip to content
2000
Volume 26, Issue 42
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Prostate cancer (PCa) is the leading cause of death by cancer in men. Because of the drastic decline in the survival rate of PCa patients with advanced/metastatic disease, early diagnosis of disease and therapy without toxic side effects is crucial. Chemotherapy is widely used to control the progression of PCa at the later stages; however, it is associated with off-target toxicities and severe adverse effects due to the lack of specificity. Delivery of therapeutic or diagnostic agents by using targeted nanoparticles is a promising strategy to enhance accuracy and sensitivity of diagnosis of PCa and to increase efficacy and specificity of therapeutic agents. Numerous efforts have been made in past decades to create nanoparticles with different architectural bases for specific delivery payloads to prostate tumors. Major PCa associated cell membrane protein markers identified as targets for such purposes include folate receptor, sigma receptors, transferrin receptor, gastrin-releasing peptide receptor, urokinase plasminogen activator receptor, and prostate specific membrane antigen. Among these markers, prostate specific membrane antigen has emerged as an extremely specific and sensitive targetable marker for designing targeted nanoparticle-based delivery systems for PCa. In this article, we review contemporary advances in design, specificity, and efficacy of nanoparticles functionalized against PCa. Whenever feasible, both diagnostic as well as therapeutic applications are discussed.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612826666200721001500
2020-11-01
2025-04-15
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612826666200721001500
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test