Skip to content
2000
Volume 24, Issue 44
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background: Human mesenchymal stem cell-derived exosomes (hMSC-Exo) have been shown to reduce ischemia/reperfusion injury (I/R) in multiple models. I/R-induced apoptosis or autophagy play important roles in cell death. However, little or no reports demonstrate any roles of hMSC-Exo in this regards. Objective: To test the hypothesis that the inhibition of I/R-induced apoptosis and autophagy play a pivotal role in the cardioprotection of hMSC-Exo. Methods: Myoblast H9c2 cells and isolated rat hearts underwent hypoxia/re-oxygenate (H/R) or ischemia/ reperfusion (I/R) respectively. H9c2 were treated with 1.0 μg/ml Exo, in comparison with 3-MA or rapamycin (Rapa), a known anti- or pro-autophagic agent respectively. Hearts were treated with 0.5, 1.0 and 2.0 μg/ml Exo for 20 min in the beginning of reperfusion. Cell viability, WST assay, LDH release, Annexin-V staining apoptosis assay and GFP-LC3 labeled autophagosomes formation, cardiac function and Western blot were measured. Results: Exo significantly reduced H/R injury as indicated by increased cell viability and reduced LDH and apoptosis. 3-MA, while Rapa, showed increased or decreased protective effects. Rapa-induced injury was partially blocked by Exo. Exo decreased LC3-II/I ratio and increased p62, inhibited autophagosome formation, an indication of autophagy inhibition. In isolated heart, Exo increased cardiac functional recovery and reduced LDH release in I/R. Bcl-2 was significantly upregulated by Exo but not 3-MA. Exo downregulated Traf6 and upregulated mTORC1/p-4eBP1. Conclusion: Exo reduce I/R-induced apoptosis and autophagy. Up-regulation of Bcl-2 is the cross-talk between these two processes. The down-regulation of Traf6 and activation of mTORC1 are additional mechanisms in the inhibition of apoptosis and autophagy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612825666190119130441
2018-12-01
2025-06-26
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612825666190119130441
Loading

  • Article Type:
    Research Article
Keyword(s): apoptosis; autophagy; Bcl-2; Exosome; ischemia/reperfusion; mTOR; Traf6
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test