Skip to content
2000
Volume 21, Issue 9
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Atherosclerosis, the primary cause of cardiovascular disease, is a complex and multifactorial pathology resulted from the harmful interactions between genetic and environmental factors. There is a growing body of evidence in support of the role of mitochondrial factors in the pathogenesis of atherosclerosis. Impaired mitochondrial function and structural and qualitative changes in mitochondrial components such as mitochondrial DNA (mtDNA) damage may be directly involved in the development of multiple mechanisms of atherogenesis. Recent findings show that several heteroplasmic mutations of mtDNA are related to atherosclerosis, coronary heart disease and several atherosclerosis-related diseases such as arterial hypertension and diabetes mellitus. Therefore, heteroplasmic mtDNA mutations could represent a promising molecular biomarker of genetic susceptibility to atherosclerosis and related pathologies. This review is focused on the latest findings in the studies of mutations of mitochondrial genome, which are associated with atherosclerosis and atherosclerosis- related diseases.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612820666141013133000
2015-03-01
2025-04-04
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612820666141013133000
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test