Skip to content
2000
Volume 20, Issue 27
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Mycolic acids are the major lipid components of the unique mycobacterial cell wall responsible for the protection of the tuberculosis bacilli from many outside threats. Mycolic acids are synthesized in the cytoplasm and transported to the outer membrane as trehalose- containing glycolipids before being esterified to the arabinogalactan portion of the cell wall and outer membrane glycolipids. The large size of these unique fatty acids is a result of a huge metabolic investment that has been evolutionarily conserved, indicating the importance of these lipids to the mycobacterial cellular survival. There are many key enzymes involved in the mycolic acid biosynthetic pathway, including fatty acid synthesis (KasA, KasB, MabA, InhA, HadABC), mycolic acid modifying enzymes (SAM-dependent methyltransferases, aNAT), fatty acid activating and condensing enzymes (FadD32, Acc, Pks13), transporters (MmpL3) and tranferases (Antigen 85A-C) all of which are excellent potential drug targets. Not surprisingly, in recent years many new compounds have been reported to inhibit specific portions of this pathway, discovered through both phenotypic screening and target enzyme screening. In this review, we analyze the new and emerging inhibitors of this pathway discovered in the post-genomic era of tuberculosis drug discovery, several of which show great promise as selective tuberculosis therapeutics.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612819666131118203641
2014-08-01
2025-06-20
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612819666131118203641
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test