Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Our incessant tug-of-war with multidrug resistant pathogenic bacteria has prompted researchers to explore novel methods of designing therapeutics in order to defend ourselves against infectious diseases. Combined advances in whole genome analysis, bioinformatics algorithms, and biochemical techniques have led to the discovery and subsequent characterization of an abundant array of functional small peptides in microorganisms and multicellular organisms. Typically classified as having 10 to 100 amino acids, many of these peptides have been found to have dual activities, executing important defensive and regulatory functions in their hosts. In higher organisms, such as mammals, plants, and fungi, host defense peptides have been shown to have immunomodulatory and antimicrobial properties. In microbes, certain growth-inhibiting peptides have been linked to the regulation of diverse cellular processes. Examples of these processes include quorum sensing, stress response, cell differentiation, biofilm formation, pathogenesis, and multidrug tolerance. In this review, we will present a comprehensive overview of the discovery, characteristics, and functions of host- and bacteria-derived peptides with antimicrobial activities. The advantages and possible shortcomings of using these peptides as antimicrobial agents and targets will also be discussed. We will further examine current efforts in engineering synthetic peptides to be used as therapeutics and/or drug delivery vehicles.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/13816128113199990011
2014-02-01
2025-05-12
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/13816128113199990011
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test