Skip to content
2000
Volume 18, Issue 23
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Polymeric micelles (PMs) belong to supramolecular core-shell-type assemblies. PMs are from amphiphilic block copolymers with several tens of nanometers in diameter. An important criterion verifying the effectiveness of micellar drug carriers is the ability to control the location and time over which drug release occurs. The pH variations in the body are particularly important in the development of micellar carriers for treating diseases such as cancer and inflammation. pH-sensitive PMs have emerged as a fascinating class of nanoscopic drug carriers that can be elegantly applied for programmed drug and gene delivery. In this review, we provide an analysis of recent literature reports on these pH-sensitive PMs. Different approaches that have been taken to develop pH-sensitive PMs are highlighted, including incorporating pH-sensitive building blocks such as poly(L-histidine) and poly(β-amino ester), and acid degradable linkages such as hydrazones and acetals. The potential applications of pH-sensitive PMs within the biomedical field are also summarized.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161212801227122
2012-08-01
2025-05-13
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161212801227122
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test