Skip to content
2000
Volume 18, Issue 14
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Small molecules that can induce and stabilize G-quadruplex DNA structures represent a novel approach for anti-cancer and anti-parasitic therapy and extensive efforts have been directed towards discovering lead compounds that are capable of stabilizing quadruplexes. The purpose of this study is to explore conformational modifications in a series of heterocyclic dications to discover structural motifs that can selectively bind and stabilize specific G-quadruplexes, such as those present in the human telomere. The G-quadruplex has various potential recognition sites for small molecules; however, the primary interaction site of most of these ligands is the terminal tetrads. Similar to duplex-DNA groove recognition, quadruplex groove recognition by small molecules offers the potential for enhanced selectivity that can be developed into a viable therapeutic strategy. The compounds investigated were selected based on preliminary studies with DB832, a bifuryl-phenyl diamidine with a unique telomere interaction. This compound provides a paradigm that can help in understanding the optimum compound-DNA interactions that lead to quadruplex groove recognition. DNA recognition by the DB832 derivatives was investigated by biophysical experiments such as thermal melting, circular dichroism, mass spectrometry and NMR. Biological studies were also performed to complement the biophysical data. The results suggest a complex binding mechanism which involves the recognition of grooves for some ligands as well as stacking at the terminal tetrads of the human telomeric G-quadruplex for most of the ligands. These molecules represent an excellent starting point for further SAR analysis for diverse modes of quadruplex recognition and subsequent structure optimization for drug development.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161212799958422
2012-05-01
2025-04-15
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161212799958422
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test