Skip to content
2000
Volume 18, Issue 8
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Hypoxic tissue exists in most of the solid tumors and hypoxia is a common character of these tumors. The existence of hy-poxic tissue in the tumor decreases the efficacy of radiotherapy and chemotherapy. Radiolabeled hypoxia markers have been developed to measure the hypoxic tissue together with non-invasive imaging techniques such as PET, SPECT, and PET/CT. This offers a conven-ient approach to delineate the tumor providing useful information for diagnosing cancer and guiding the treatment plan. Bioreducible or-ganic compounds have been developed as the hypoxia markers to probe tissue hypoxia noninvasively because they can be reduced and metabolized under hypoxic conditions; form adducts with cell components, and thus be trapped in the hypoxic tissue. These compounds include nitroimidazoles and other redox-sensitive compounds such as BnAO and ATSM. Different radionuclides have been used to label these compounds such as technetium-99m, iodine-123, fluorine-18, copper-64, etc. In addition, to detect hypoxia with endogenous hy-poxia markers such as carbonic anhydrase IX (CA IX) and hypoxia-inducible factor-1 (HIF-1), some radiolabeled tracers have also been developed. This article is an overview of the progress in this area in the past decade including the development of radiolabeled com-pounds for hypoxia detection and problems associated with the hypoxia marker development.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161212799315849
2012-03-01
2025-05-30
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161212799315849
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test