Skip to content
2000
Volume 18, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Assisted reproductive technologies (ART) are successfully applied in several mammals, including humans, thanks to the ability of oocytes and embryos to face maturation, fertilization and first development in vitro. However, efficiency and safety of ART represent main issues. Mammalian oocytes and early embryos are transcriptionally inactive, and rely exclusively on maternal RNAs and proteins, deposited during oocyte growth, until embryonic genome activation (EGA). Such transcriptional quiescence needs complex post-transcriptional and post-translational mechanisms to coordinate meiotic maturation, fertilization, and reprogramming of the nascent genome. These events are the final outcome of complex, hormonally regulated biological processes that translate into specific molecular mechanisms, which are still far from being fully understood. A deep knowledge of these early phases of development is crucial to understand the core mechanisms of life onset, and to optimize the safety and efficiency of in vitro reproductive technologies. This work focuses on meiotic progression and pre-implantation development in mammals, underlining the importance of fundamental molecules stored during oocyte growth and selectively used during early embryogenic stages. Taking into account the species-specific behaviour of these pivotal molecules, this review describes the advantages of using large domestic animals for research in the reproductive field and proposes large domestic animals as models to improve human ART.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161212799040385
2012-01-01
2025-04-21
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161212799040385
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test