Skip to content
2000
Volume 16, Issue 33
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The ultimate aim of therapy or vaccine design against HIV is to eliminate ongoing virus replication or prevent HIV infection. The task at hand is daunting given the wide array of HIV variants circulating and the immense degree of variation found within the virus, especially in the envelope glycoprotein. HIV utilizes the CD4 receptor and a range of 7 transmembrane chemokine coreceptors for cell entry, specifically CCR5 and CXCR4. These receptors provide a number of targets for therapy design, however, the finding that multiple receptors allow for viral entry suggests that targeting one may cause the virus to swirch to using another receptor. The molecular interactions directing coreceptor usage are complex and can involve the same modifications associated with escape from the effect of neutralizing antibodies (NAbs), indicating that they are not unrelated and can in all likelihood impact on each other. Furthermore, a large array of other receptors, other than CD4, CCR5 and/or CXCR4 can interact with HIV with consequences for HIV tranmssion as well as disease progression.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161210794079146
2010-11-01
2025-04-09
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161210794079146
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test