Skip to content
2000
Volume 16, Issue 29
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

In recent years there has been renewed activity in the literature concerning the 1,3-dipolar cycloaddition reaction (1,3-DCR) of organic azides (R-N3) with alkynes (R´ C≡CH)to form 1,2,3-triazoles, i.e. the Huisgen synthesis. The use of catalytic Cu(I) leads to a dramatic rate enhancement (up to 107-fold) and exclusive synthesis of the 1,4-disubstituted 1,2,3-triazole product. The reaction, now referred to as the copper-catalyzed azide-alkyne cycloaddition (CuAAC), meets the stringent criteria of a click-reaction in that it is modular, wide in scope, high yielding, has no byproducts, operates in water at ambient temperature, product purification is simple and the starting materials are readily available. The 1,3-DCR reaction has rapidly become the premier click chemistry reaction with applications spanning modern chemistry disciplines, including medicinal chemistry. Recently the ‘tail’ approach initiative for the development of carbonic anhydrase inhibitors (CAIs) has been combined with the synthetic versatility of click chemistry. This has proven a powerful combination leading to the synthesis of CAIs with useful biopharmaceutical properties and activities. This review will discuss complementary and contrasting applications that have utilized ‘click tailing’ development of CAIs. Applications encompass i) medicinal chemistry and drug discovery; ii) radiopharmaceutical development of positron emission topography (PET) chemical probes; and iii) in situ click chemistry.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161210793429869
2010-10-01
2025-05-13
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161210793429869
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test