Skip to content
2000
Volume 16, Issue 2
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Thiopurines are widely used in the treatment of inflammatory bowel disease (IBD). However, in clinical practice azathioprine (AZA) or 6-mercaptopurine (6-MP) are not effective in one-third of patients and up to one-fifth of patients discontinue thiopurine therapy due to adverse reactions. The observed interindividual differences in therapeutic response and toxicity to thiopurines are explained to a large extent by the variable formation of active metabolites, which is at least partly caused by genetic polymorphisms of the genes encoding crucial enzymes in thiopurine metabolism. In this in-depth review we discuss the genetic polymorphisms of genes encoding for glutathione S-tranferases, xanthine oxidase, thiopurine S-methyltransferase, inosine triphosphate pyrophosphatase, hypoxanthine phosphoribosyltransferase, inosine monophosphate dehydrogenase and multidrug resistance proteins. Pharmacogenetic knowledge in this field has increased dramatically and is still rapidly increasing, but the translation into practical guidelines with tailored advices will cost much effort in the near future.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161210790112773
2010-01-01
2025-05-06
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161210790112773
Loading

  • Article Type:
    Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test