Skip to content
2000
Volume 12, Issue 3
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The intrinsic or acquired resistance to anticancer drugs remains one of the most significant factors impeding the progress of cancer chemotherapy. This phenomenon often involves simultaneous resistance to other anticancer drugs that differ in their chemical structure and mode of action and are not even used in chemotherapy. This phenotype has been called multidrug resistance (MDR). Although the cellular basis underlying MDR is not fully understood, several factors mediating therapy resistance in tumors have been proposed. One of the mechanisms leading to chemoresistance of tumor cells is the increased activity of transporter proteins. The best-characterized transporter protein is MDR1/P-glycoprotein, and a number of clinical investigations have suggested that its intrinsic or acquired overexpression resulted in a poor clinical outcome of chemotherapy. Various types of compounds and techniques for the reversal of MDR1/P-glycoproteinmediated MDR have been developed, and efforts have concentrated on the inhibition of function and suppression of expression. This review summarizes the current state of knowledge of MDR1/P-glycoprotein and the modulation of MDR by targeting MDR1/P-glycoprotein.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/138161206775201965
2006-01-01
2025-04-15
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/138161206775201965
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test