Skip to content
2000
Volume 10, Issue 6
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by cardinal features of tremor, bradykinesia, rigidity and postural instability. In addition to the motor symptoms patients experience cognitive decline eventually resulting in severe disability. Pathologically PD is characterized by neurodegeneration in the substantia nigra pars compacta (SNc) with intracytoplasmic inclusions known as Lewy bodies. In addition to the SNc there is neurodegeneration in other areas including cerebral cortex, raphe nuclei, locus ceruleus, nucleus basalis of meynert, cranial nerves and autonomic nervous system. Recent evidence supports the role of inflammation in Parkinson's disease. Apoptosis has been shown to be one of the pathways of cell death in PD. Minocycline, a tetracycline derivative is a caspase inhibitor, and also inhibits the inducible nitric oxide synthase which are important for apoptotic cell death. Furthermore, Minocycline has been shown to block microglial activation of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned parkinsonism animal models and protect against nigrostriatal dopaminergic neurodegeneration. In this review, we present the current experimental evidence for the potential use of tetracycline derivative, minocycline, as a neuroprotective agent in PD.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612043453162
2004-02-01
2025-04-03
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612043453162
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test