Skip to content
2000
Volume 8, Issue 27
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

The enediynes remain among the most potent antitumoral agents to have been discovered in the past decade. Following prodrug activation, the enediynes undergo cycloaromatization reactions resulting in formation of highly reactive diradical intermediates. The diradical species engage in atom-transfer chemistry to produce neutral arene products, in the process inducing damage to key macromolecules. Several of the naturally occurring members of the enediyne family of antibiotics have entered clinical trials, and this has prompted the design of synthetic enediynes, where the enediyne ‘warhead’ is conjugated to a targeted delivery vehicle. This review will describe ecent efforts using chemical synthesis to identify and improve the target specificity of designed enediynes, and to establish efficient methods to achieve prodrug activation. Finally, new horizons will be examined, including the use of post-cycloaromatized enediyne templates as recognition elements for unique DNA and RNA microenvironments.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/1381612023392810
2002-12-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cpd/10.2174/1381612023392810
Loading

  • Article Type:
    Review Article
Keyword(s): bulges; chromoprotein; cycloaromatization; DNA; enediyne; prodrug; protease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test