Skip to content
2000
image of Systems Pharmacology-based Drug Discovery and Active Mechanism of Ganoderma lucidum Triterpenoids for Type 2 Diabetes Mellitus by Integrating Network Pharmacology and Molecular Docking

Abstract

Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease primarily characterized by insufficient insulin secretion or reduced insulin sensitivity in the body's cells, leading to persistently high blood glucose levels. triterpenoids, as important secondary metabolites of , have shown preliminary potential efficacy in the treatment of T2DM according to existing research. However, due to the structural complexity and diversity of these triterpenoid compounds, as well as the intricate interactions between their therapeutic targets and active ingredients, the precise molecular and pharmacological mechanisms remain to be further explored.

In the present research, we aim to fully employ the integrated approach of network pharmacology and molecular docking methodologies, delving deeply into the potential therapeutic targets and their underlying pharmacological mechanisms in the management of T2DM via triterpenoids.

The active compounds were sourced from prior research and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Their potential targets were predicted with the aid of Swiss Target Prediction. Genes linked to T2DM were gathered from DisGeNET and GeneCards. Using Cytoscape, we established the network connecting active ingredients, targets, and pathways, and the target protein-protein interaction (PPI) network was created using data from the STRING database. The core targets of triterpenoids underwent gene enrichment analysis via DAVID. Lastly, to validate our chosen triterpenoids, we conducted molecular docking experiments between the compounds and their targets.

A total of 53 triterpenoids and 116 associated targets were identified. Among these, SRC, MAPK1, MAPK3, HSP90AA1, TP53, PIK3CA, and AKT1 emerged as pivotal targets. We retrieved 447 Gene Ontology (GO) functional annotations and 153 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, notably including the PI3K-Akt signaling pathway, Endocrine resistance, Rap1 signaling pathway, and Lipid and Atherosclerosis, which are known to be associated with T2DM. Our findings suggest that triterpenoids may confer resistance to T2DM through mechanisms related to hyperexcitability, cell death, cell survival, proliferation, differentiation, and inflammation.

A comprehensive, interdisciplinary, and multi-technology approach has been established, which uncovers the collaborative effects and underlying principles of triterpenoids in the management and therapy of T2DM from a holistic perspective. This approach provides new insights into the development of novel biological control products for Type 2 Diabetes Mellitus (T2DM) and lays the foundation for future systematic studies on the interactions between Ganoderma triterpenes and different targets, elucidating their primary and secondary pathways for lowering blood glucose.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128365423250126035306
2025-02-13
2025-03-30
Loading full text...

Full text loading...

References

  1. France N.L. Syed Y.Y. Tirzepatide: A review in type 2 diabetes. Drugs 2024 84 2 227 238 10.1007/s40265‑023‑01992‑4 38388874
    [Google Scholar]
  2. Taheri S. Type 2 diabetes remission: A new mission in diabetes care. Diabetes Care 2024 47 1 47 49 10.2337/dci23‑0062 38117996
    [Google Scholar]
  3. Patel D.K. Kumar R. Laloo D. Hemalatha S. Diabetes mellitus: An overview on its pharmacological aspects and reported medicinal plants having antidiabetic activity. Asian Pac. J. Trop. Biomed. 2012 2 5 411 420 10.1016/S2221‑1691(12)60067‑7 23569941
    [Google Scholar]
  4. Petersmann A Wieland M.D Müller U A Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diabetes. 2019 127 S 01 S1 S7 10.1055/a‑1018‑9078
    [Google Scholar]
  5. DeFronzo R.A. Ferrannini E. Groop L. Henry R.R. Herman W.H. Holst J.J. Hu F.B. Kahn C.R. Raz I. Shulman G.I. Simonson D.C. Testa M.A. Weiss R. Type 2 diabetes mellitus. Nat. Rev. Dis. Primers 2015 1 1 15019 10.1038/nrdp.2015.19 27189025
    [Google Scholar]
  6. Schram M.T. Sep S.J.S. van der Kallen C.J. Dagnelie P.C. Koster A. Schaper N. Henry R.M.A. Stehouwer C.D.A. The Maastricht Study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur. J. Epidemiol. 2014 29 6 439 451 10.1007/s10654‑014‑9889‑0 24756374
    [Google Scholar]
  7. Han L. Fang C. Zhu R. Peng Q. Li D. Wang M. Inhibitory effect of phloretin on α-glucosidase: Kinetics, interaction mechanism and molecular docking. Int. J. Biol. Macromol. 2017 95 520 527 10.1016/j.ijbiomac.2016.11.089 27894824
    [Google Scholar]
  8. Lebovitz H.E. alpha-Glucosidase inhibitors. Endocrinol. Metab. Clin. North Am. 1997 26 3 539 551 10.1016/S0889‑8529(05)70266‑8 9314014
    [Google Scholar]
  9. Imran S. Taha M. Ismail N.H. Kashif S.M. Rahim F. Jamil W. Hariono M. Yusuf M. Wahab H. Synthesis of novel flavone hydrazones: In-vitro evaluation of α-glucosidase inhibition, QSAR analysis and docking studies. Eur. J. Med. Chem. 2015 105 156 170 10.1016/j.ejmech.2015.10.017 26491979
    [Google Scholar]
  10. Kim J.H. Cho C.W. Kim H.Y. Kim K.T. Choi G.S. Kim H.H. Cho I.S. Kwon S.J. Choi S.K. Yoon J.Y. Yang S.Y. Kang J.S. Kim Y.H. α -Glucosidase inhibition by prenylated and lavandulyl compounds from Sophora flavescens roots and in silico analysis. Int. J. Biol. Macromol. 2017 102 960 969 10.1016/j.ijbiomac.2017.04.092 28455256
    [Google Scholar]
  11. Salar U. Taha M. Khan K.M. Ismail N.H. Imran S. Perveen S. Gul S. Wadood A. Syntheses of new 3-thiazolyl coumarin derivatives, in vitro α -glucosidase inhibitory activity, and molecular modeling studies. Eur. J. Med. Chem. 2016 122 196 204 10.1016/j.ejmech.2016.06.037 27371923
    [Google Scholar]
  12. Trinh B.T.D. Staerk D. Jäger A.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. J. Ethnopharmacol. 2016 186 189 195 10.1016/j.jep.2016.03.060 27041401
    [Google Scholar]
  13. Kohda H. Tokumoto W. Sakamoto K. Fujii M. Hirai Y. Yamasaki K. Komoda Y. Nakamura H. Ishihara S. Uchida M. The biologically active constituents of Ganoderma lucidum (Fr.) Karst. Histamine release-inhibitory triterpenes. Chem. Pharm. Bull. (Tokyo) 1985 33 4 1367 1374 10.1248/cpb.33.1367 2412714
    [Google Scholar]
  14. Kubota T. Asaka Y. Miura I. Mori H. Structures of Ganoderic Acid A and B, Two New Lanostane Type Bitter Triterpenes from Ganoderma lucidum (FR.) K ARST. Helv. Chim. Acta 1982 65 2 611 619 10.1002/hlca.19820650221
    [Google Scholar]
  15. Chen R.Y. Yu D.Q. [Progress of studies on the chemical constituents of Ganoderma triterpene]. Yao Xue Xue Bao 1990 25 12 940 953 2104477
    [Google Scholar]
  16. Huang S.Z. Ma Q.Y. Kong F.D. Guo Z.K. Cai C.H. Hu L.L. Zhou L.M. Wang Q. Dai H.F. Mei W.L. Zhao Y.X. Lanostane-type triterpenoids from the fruiting body of Ganoderma calidophilum. Phytochemistry 2017 143 104 110 10.1016/j.phytochem.2017.07.015 28800421
    [Google Scholar]
  17. Ren L. Protective effect of ganoderic acid against the streptozotocin induced diabetes, inflammation, hyperlipidemia and microbiota imbalance in diabetic rats. Saudi J. Biol. Sci. 2019 26 8 1961 1972 10.1016/j.sjbs.2019.07.005 31889779
    [Google Scholar]
  18. Shao C.S. Zhou X.H. Zheng X.X. Huang Q. Ganoderic acid D induces synergistic autophagic cell death except for apoptosis in ESCC cells. J. Ethnopharmacol. 2020 262 113213 10.1016/j.jep.2020.113213 32755651
    [Google Scholar]
  19. Jia Y. Zhang D. Li H. Luo S. Xiao Y. Han L. Zhou F. Wang C. Feng L. Wang G. Wu P. Xiao C. Yu H. Du J. Bao H. Activation of FXR by ganoderic acid A promotes remyelination in multiple sclerosis via anti-inflammation and regeneration mechanism. Biochem. Pharmacol. 2021 185 114422 10.1016/j.bcp.2021.114422 33482151
    [Google Scholar]
  20. Chiu H.F. Fu H.Y. Lu Y.Y. Han Y.C. Shen Y.C. Venkatakrishnan K. Golovinskaia O. Wang C.K. Triterpenoids and polysaccharide peptides-enriched Ganoderma lucidum : A randomized, double-blind placebo-controlled crossover study of its antioxidation and hepatoprotective efficacy in healthy volunteers. Pharm. Biol. 2017 55 1 1041 1046 10.1080/13880209.2017.1288750 28183232
    [Google Scholar]
  21. Su L. Liu L. Jia Y. Lei L. Liu J. Zhu S. Zhou H. Chen R. Lu H.A.J. Yang B. Ganoderma triterpenes retard renal cyst development by downregulating Ras/MAPK signaling and promoting cell differentiation. Kidney Int. 2017 92 6 1404 1418 10.1016/j.kint.2017.04.013 28709639
    [Google Scholar]
  22. Komoda Y. Shimizu M. Sonoda Y. Sato Y. Ganoderic acid and its derivatives as cholesterol synthesis inhibitors. Chem. Pharm. Bull. 1989 37 2 531 533 10.1248/cpb.37.531 2743504
    [Google Scholar]
  23. Pu D. Li X. Lin J. Zhang R. Luo T. Wang Y. Gao J. Zeb M.A. Zhang X. Li X. Wang R. Xiao W. Triterpenoids from Ganoderma gibbosum: A class of sensitizers of FLC-resistant Candida albicans to fluconazole. J. Nat. Prod. 2019 82 8 2067 2077 10.1021/acs.jnatprod.9b00148 31310122
    [Google Scholar]
  24. Hopkins A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008 4 11 682 690 10.1038/nchembio.118 18936753
    [Google Scholar]
  25. Li S. Zhang B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013 11 2 110 120 10.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  26. Tang H.C. Huang H.J. Lee C.C. Chen C.Y.C. Network pharmacology-based approach of novel traditional Chinese medicine formula for treatment of acute skin inflammation in silico. Comput. Biol. Chem. 2017 71 70 81 10.1016/j.compbiolchem.2017.08.013 28987294
    [Google Scholar]
  27. Azmi A.S. Adopting network pharmacology for cancer drug discovery. Curr. Drug Discov. Technol. 2013 10 2 95 105 10.2174/1570163811310020002 23237672
    [Google Scholar]
  28. Meng X.Y. Zhang H.X. Mezei M. Cui M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des. 2011 7 2 146 157 10.2174/157340911795677602 21534921
    [Google Scholar]
  29. Yamashita F. Hashida M. In silico approaches for predicting ADME properties of drugs. Drug Metab. Pharmacokinet. 2004 19 5 327 338 10.2133/dmpk.19.327 15548844
    [Google Scholar]
  30. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  31. Luo T. Zhao Z. Wu M. Ren X. Xu Z. Li L. Yi Y. Wang H. Wang L. Network pharmacology screening, in vitro and in vivo evaluation of antianxiety and antidepressant drug-food analogue. Phytomedicine 2024 134 155999 10.1016/j.phymed.2024.155999 39241390
    [Google Scholar]
  32. Bilen E. Özmen O.Ü. Çete S. Alyar S. Yaşar A. Bioactive sulfonyl hydrazones with alkyl derivative: Characterization, ADME properties, molecular docking studies and investigation of inhibition on choline esterase enzymes for the diagnosis of Alzheimer’s disease. Chem. Biol. Interact. 2022 360 109956 10.1016/j.cbi.2022.109956 35452634
    [Google Scholar]
  33. Guo Y. Ding Y. Xu F. Liu B. Kou Z. Xiao W. Zhu J. Systems pharmacology-based drug discovery for marine resources: An example using sea cucumber (Holothurians). J. Ethnopharmacol. 2015 165 61 72 10.1016/j.jep.2015.02.029 25701746
    [Google Scholar]
  34. Wang X. Xu X. Tao W. Li Y. Wang Y. Yang L. A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease. Evid. Based Complement. Alternat. Med. 2012 2012 1 15 10.1155/2012/519031 23243453
    [Google Scholar]
  35. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  36. Xu X. Zhang W. Huang C. Li Y. Yu H. Wang Y. Duan J. Ling Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci. 2012 13 6 6964 6982 10.3390/ijms13066964 22837674
    [Google Scholar]
  37. Lipinski C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 2016 101 34 41 10.1016/j.addr.2016.04.029 27154268
    [Google Scholar]
  38. Butina D. Segall M.D. Frankcombe K. Predicting ADME properties in silico: Methods and models. Drug Discov. Today 2002 7 11 S83 S88 10.1016/S1359‑6446(02)02288‑2 12047885
    [Google Scholar]
  39. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res. 2021 49 D1 D1388 D1395 10.1093/nar/gkaa971 33151290
    [Google Scholar]
  40. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  41. UniProt Consortium UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2019 47 D1 D506 D515 10.1093/nar/gky1049 30395287
    [Google Scholar]
  42. Safran M. Dalah I. Alexander J. Rosen N. Stein I.T. Shmoish M. Nativ N. Bahir I. Doniger T. Krug H. Madi S.A. Olender T. Golan Y. Stelzer G. Harel A. Lancet D. GeneCards Version 3: The human gene integrator. Database 2010 2010 0 baq020 10.1093/database/baq020 20689021
    [Google Scholar]
  43. Bardou P. Mariette J. Escudié F. Djemiel C. Klopp C. jvenn: An interactive Venn diagram viewer. BMC Bioinformatics 2014 15 1 293 10.1186/1471‑2105‑15‑293 25176396
    [Google Scholar]
  44. Zhou Y. Zhang Y. Lian X. Li F. Wang C. Zhu F. Qiu Y. Chen Y. Therapeutic target database update 2022: Facilitating drug discovery with enriched comparative data of targeted agents. Nucleic Acids Res. 2022 50 D1 D1398 D1407 10.1093/nar/gkab953 34718717
    [Google Scholar]
  45. Kohl M Wiese S Warscheid B. Cytoscape: Software for visualization and analysis of biological networks. Methods Mol. Biol. 2011 696 291 303 10.1007/978‑1‑60761‑987‑1_18
    [Google Scholar]
  46. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Cepas H.J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  47. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  48. Tang D. Chen M. Huang X. Zhang G. Zeng L. Zhang G. Wu S. Wang Y. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 e0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  49. Kanehisa M. Furumichi M. Sato Y. Watanabe I.M. Tanabe M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021 49 D1 D545 D551 10.1093/nar/gkaa970 33125081
    [Google Scholar]
  50. Paggi J.M. Pandit A. Dror R.O. The art and science of molecular docking. Annu. Rev. Biochem. 2024 93 1 389 410 10.1146/annurev‑biochem‑030222‑120000 38594926
    [Google Scholar]
  51. Ma B. Zhang H. Li R. Zhang S. Chen L. Zhou T. Wang J. Zhang R. Ding S. Xiao X. Deng T. Chen L. Fan X. Molecular-docking electrolytes enable high-voltage lithium battery chemistries. Nat. Chem. 2024 16 9 1427 1435 10.1038/s41557‑024‑01585‑y 39009795
    [Google Scholar]
  52. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Paredes R.B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  53. Tunyasuvunakool K. Adler J. Wu Z. Green T. Zielinski M. Žídek A. Bridgland A. Cowie A. Meyer C. Laydon A. Velankar S. Kleywegt G.J. Bateman A. Evans R. Pritzel A. Figurnov M. Ronneberger O. Bates R. Kohl S.A.A. Potapenko A. Ballard A.J. Paredes R.B. Nikolov S. Jain R. Clancy E. Reiman D. Petersen S. Senior A.W. Kavukcuoglu K. Birney E. Kohli P. Jumper J. Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature 2021 596 7873 590 596 10.1038/s41586‑021‑03828‑1 34293799
    [Google Scholar]
  54. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  55. Wang Z.Z. Yang J. Sun X.D. Probing the binding mechanism of substituted pyridine derivatives as effective and selective lysine-specific demethylase 1 inhibitors using 3D-QSAR, molecular docking and molecular dynamics simulations. J. Biomol. Struct. Dyn. 2018 ••• 10.1080/07391102.2018.1518158 30175693
    [Google Scholar]
  56. Carter P.J. Quarmby V. Immunogenicity risk assessment and mitigation for engineered antibody and protein therapeutics. Nat. Rev. Drug Discov. 2024 23 12 898 913 10.1038/s41573‑024‑01051‑x 39424922
    [Google Scholar]
  57. Swanson K. Walther P. Leitz J. Mukherjee S. Wu J.C. Shivnaraine R.V. Zou J. ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries. Bioinformatics 2024 40 7 btae416 10.1093/bioinformatics/btae416 38913862
    [Google Scholar]
  58. Tang Y. Fu Z. Raos G. Ma F. Zhao P. Hou Y. Molecular dynamics simulation of adhesion at the asphalt-aggregate interface: A review. Surf. Interfaces 2024 44 103706 10.1016/j.surfin.2023.103706
    [Google Scholar]
  59. Ramos R.H. de Oliveira Lage Ferreira C. Simao A. Human protein–protein interaction networks: A topological comparison review. Heliyon 2024 10 5 e27278 10.1016/j.heliyon.2024.e27278 38562502
    [Google Scholar]
  60. Cao M.Y. Zainudin S. Daud K.M. Protein features fusion using attributed network embedding for predicting protein-protein interaction. BMC Genomics 2024 25 1 466 10.1186/s12864‑024‑10361‑8 38741045
    [Google Scholar]
  61. Mu K. Ran F. Peng L. Zhou L. Wu Y. Shao M. Chen X. Guo C. Luo Q. Wang T. Liu Y. Liu G. Identification of diagnostic biomarkers of rheumatoid arthritis based on machine learning-assisted comprehensive bioinformatics and its correlation with immune cells. Heliyon 2024 10 15 e35511 10.1016/j.heliyon.2024.e35511 39170142
    [Google Scholar]
  62. Liu Z. Zhao P. Integrative analysis unveils ECM signatures and pathways driving hepatocellular carcinoma progression: A multi‐omics approach and prognostic model development. J. Cell. Mol. Med. 2024 28 8 e18230 10.1111/jcmm.18230 38568083
    [Google Scholar]
  63. Xu F. Gao W. Zhang M. Zhang F. Sun X. Wu B. Liu Y. Li X. Li H. Diagnostic implications of ubiquitination-related gene signatures in Alzheimer’s disease. Sci. Rep. 2024 14 1 10728 10.1038/s41598‑024‑61363‑1 38730027
    [Google Scholar]
  64. Frank J.W. Saslow S.B. Camilleri M. Thomforde G.M. Dinneen S. Rizza R.A. Mechanism of accelerated gastric emptying of liquids and hyperglycemia in patients with type II diabetes mellitus. Gastroenterology 1995 109 3 755 765 10.1016/0016‑5085(95)90382‑8 7657103
    [Google Scholar]
  65. Ma Z.A. Zhao Z. Turk J. Mitochondrial dysfunction and β-cell failure in type 2 diabetes mellitus. Exp. Diabetes Res. 2012 2012 1 11 10.1155/2012/703538 22110477
    [Google Scholar]
  66. Wang H. Tan H. Zhan W. Song L. Zhang D. Chen X. Lin Z. Wang W. Yang Y. Wang L. Bei W. Guo J. Molecular mechanism of Fufang Zhenzhu Tiaozhi capsule in the treatment of type 2 diabetes mellitus with nonalcoholic fatty liver disease based on network pharmacology and validation in minipigs. J. Ethnopharmacol. 2021 274 114056 10.1016/j.jep.2021.114056 33771638
    [Google Scholar]
  67. Duan H. Khan G.J. Shang L. Peng H. Hu W. Zhang J. Hua J. Cassandra A. Rashed M.M.A. Zhai K. Computational pharmacology and bioinformatics to explore the potential mechanism of Schisandra against atherosclerosis. Food Chem. Toxicol. 2021 150 112058 10.1016/j.fct.2021.112058 33582168
    [Google Scholar]
  68. Wang Z Shah O J Hunter T The transcriptional coactivators p/CIP and SRC-1 control insulin resistance through IRS1 in obesity models. PLoS One 2012 7 7 e36961 10.1371/journal.pone.0036961
    [Google Scholar]
  69. Rowan B.G. Weigel N.L. O’Malley B.W. Phosphorylation of steroid receptor coactivator-1. Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J. Biol. Chem. 2000 275 6 4475 4483 10.1074/jbc.275.6.4475 10660621
    [Google Scholar]
  70. Ren X.X. Effect of Fyn on hyperglycaemic induced podocytosis. China Shandong University 2014 10.7666/d.Y2596976
    [Google Scholar]
  71. McRobb L.S. McGrath K.C.Y. Tsatralis T. Liong E.C. Tan J.T.M. Hughes G. Handelsman D.J. Heather A.K. Estrogen receptor control of atherosclerotic calcification and smooth muscle cell osteogenic differentiation. Arterioscler. Thromb. Vasc. Biol. 2017 37 6 1127 1137 10.1161/ATVBAHA.117.309054 28473445
    [Google Scholar]
  72. Duong P. Tenkorang M.A.A. Trieu J. McCuiston C. Rybalchenko N. Cunningham R.L. Neuroprotective and neurotoxic outcomes of androgens and estrogens in an oxidative stress environment. Biol. Sex Differ. 2020 11 1 12 10.1186/s13293‑020‑0283‑1 32223745
    [Google Scholar]
  73. Lindner V. Kim S.K. Karas R.H. Kuiper G.G.J.M. Gustafsson J.Å. Mendelsohn M.E. Increased expression of estrogen receptor-β mRNA in male blood vessels after vascular injury. Circ. Res. 1998 83 2 224 229 10.1161/01.RES.83.2.224 9686763
    [Google Scholar]
  74. Odenlund M. Ekblad E. Nilsson B.O. Stimulation of oestrogen receptor-expressing endothelial cells with oestrogen reduces proliferation of cocultured vascular smooth muscle cells. Clin. Exp. Pharmacol. Physiol. 2008 35 3 245 248 10.1111/j.1440‑1681.2007.04870.x 18290870
    [Google Scholar]
  75. Ogino Y. Tohyama S. Kohno S. Toyota K. Yamada G. Yatsu R. Kobayashi T. Tatarazako N. Sato T. Matsubara H. Lange A. Tyler C.R. Katsu Y. Iguchi T. Miyagawa S. Functional distinctions associated with the diversity of sex steroid hormone receptors ESR and AR. J. Steroid Biochem. Mol. Biol. 2018 184 38 46 10.1016/j.jsbmb.2018.06.002 29885351
    [Google Scholar]
  76. Heald A.H. far Y.G. Livingston M. Fachim H. Lunt M. Narayanan R.P. Siddals K. Moreno G. Jones R. Malipatil N. Rutter M. Gibson M. Donn R. Hackett G. Jones H. Androgen receptor-reduced sensitivity is associated with increased mortality and poorer glycaemia in men with type 2 diabetes mellitus: A prospective cohort study. Cardiovasc. Endocrinol. Metab. 2020 10 1 37 44 10.1097/XCE.0000000000000230 33634254
    [Google Scholar]
  77. Risso G. Blaustein M. Pozzi B. Mammi P. Srebrow A. Akt/PKB: One kinase, many modifications. Biochem. J. 2015 468 2 203 214 10.1042/BJ20150041 25997832
    [Google Scholar]
  78. Kane S. Sano H. Liu S.C.H. Asara J.M. Lane W.S. Garner C.C. Lienhard G.E. A method to identify serine kinase substrates. Akt phosphorylates a novel adipocyte protein with a Rab GTPase-activating protein (GAP) domain. J. Biol. Chem. 2002 277 25 22115 22118 10.1074/jbc.C200198200 11994271
    [Google Scholar]
  79. Huang X. Liu G. Guo J. Su Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018 14 11 1483 1496 10.7150/ijbs.27173 30263000
    [Google Scholar]
  80. Mosca E. Barcella M. Alfieri R. Bevilacqua A. Canti G. Milanesi L. Systems biology of the metabolic network regulated by the Akt pathway. Biotechnol. Adv. 2012 30 1 131 141 10.1016/j.biotechadv.2011.08.004 21856401
    [Google Scholar]
  81. Ma Y. Chen F. Yang S. Duan Y. Sun Z. Shi J. Silencing of TRB3 ameliorates diabetic tubule interstitial nephropathy via PI3K/AKT signaling in rats. Med. Sci. Monit. 2017 23 2816 2824 10.12659/MSM.902581 28600485
    [Google Scholar]
  82. Zhang X. Liang D. Hong Z.C. Qingqing C. Chenghai Z. Zheng R.M. Yue Z. Hongjuan L. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int. J. Mol. Med. 2015 35 6 1747 1754 10.3892/ijmm.2015.2170 25872526
    [Google Scholar]
  83. Mahmoudi M. Aslani S. Fadaei R. Jamshidi A.R. New insights to the mechanisms underlying atherosclerosis in rheumatoid arthritis. Int. J. Rheum. Dis. 2017 20 3 287 297 10.1111/1756‑185X.12999 28205331
    [Google Scholar]
  84. Samuel V.T. Shulman G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Invest. 2016 126 1 12 22 10.1172/JCI77812 26727229
    [Google Scholar]
  85. Wang Y. Chen P. Combination of HPLC-Q-TOF-MS/MS, network pharmacology, and molecular docking to reveal the mechanism of apple pollen in the treatment of type 2 diabetes mellitus. Evid. Based Complement. Alternat. Med. 2022 2022 1 14 10.1155/2022/3221196 35656465
    [Google Scholar]
  86. Fischer S. Koeberle S.C. Laufer S.A. p38α mitogen-activated protein kinase inhibitors, a patent review (2005 – 2011). Expert Opin. Ther. Pat. 2011 21 12 1843 1866 10.1517/13543776.2011.636737 22082194
    [Google Scholar]
  87. Rajesh M. Mukhopadhyay P. Bátkai S. Patel V. Saito K. Matsumoto S. Kashiwaya Y. Horváth B. Mukhopadhyay B. Becker L. Haskó G. Liaudet L. Wink D.A. Veves A. Mechoulam R. Pacher P. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J. Am. Coll. Cardiol. 2010 56 25 2115 2125 10.1016/j.jacc.2010.07.033 21144973
    [Google Scholar]
  88. Thandavarayan R.A. Watanabe K. Ma M. Gurusamy N. Veeraveedu P.T. Konishi T. Zhang S. Muslin A.J. Kodama M. Aizawa Y. Dominant-negative p38α mitogen-activated protein kinase prevents cardiac apoptosis and remodeling after streptozotocin-induced diabetes mellitus. Am. J. Physiol. Heart Circ. Physiol. 2009 297 3 H911 H919 10.1152/ajpheart.00124.2009 19617408
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128365423250126035306
Loading
/content/journals/cpd/10.2174/0113816128365423250126035306
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test