Skip to content
2000
Volume 31, Issue 10
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

is a high-altitude plant of moist and shady habitat. Its aerial parts are edible and orally administered as an antibiotic and effective aphrodisiac. They are also used as pesticides, astringents, and febrifuges.

Aim

The present study aimed to elucidate the plant's medicinal potential as an anticancer agent. Extracts of were examined for cytotoxic effects against AGS, A549, and HCT116 cell lines. The project also aimed to evaluate the phytochemical constitutents of the plant. For this purpose, GC-ToF-MS analysis was executed to identify the bioactive compounds in the aerial parts extract of . As a result, 93 different phytochemicals were identified from the spectral properties of GC-ToF-MS which contain 19 compounds of high peaks having reported anti-inflammatory, Anti-diabetic, Antibacterial, Analgesic, and antioxidant potential.

Methods

Three different cell lines have been treated against Ethanol, Methanol, Ethyl acetate, Water, Chloroform, Acetone, and n-hexane extracts from the aerial parts of . These cell lines were checked and were ranked in lethality based on IC value. The extract samples were processed as serial dilution from high concentrations (500 ug/ml). All the three cell lines were treated for 48 hours.

Results

Extracts showed a significant effect in different cell lines (based on IC less than 200 ug/ml). Performing the anticancer activity against the three different cell lines in Ethyl Acetate, Methanol, n-hexane, Chloroform and Acetone extract of indicated that anticancer activity of the plant is high against AGS and A549 cell line while less prominent in HTC116 cell lines through MTT Assay. drug-likeness and ADMET analysis were studied of the compounds, that exhibit considerable drug likenesses, phytochemical medicinal chemistry, and a promising ADMET score and no toxicity. The candidate compounds were chosen for further elucidation by Molecular Docking and dynamic simulations. Employing the molecular docking approach for virtual screening of the phytochemicals it was found that the compounds Germacrene showed remarkable results towards BCL2 with -7 Kcal/Mol and a-D-(+)-Xylopyranose showed significant docking results towards 5P21 with -7.1 Kcal/Mol.

Conclusion

For multi-scale frames structural aberrations and fluctuations identification of the docked complexes, a molecular dynamics analysis was performed for a 100 ps simulation run by accessing the online tool of MDweb simulations. These molecular docking and simulation analyses also revealed that both the phytochemicals have a stable interaction with the cancer-related proteins BCL2 and 5P21.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128349549241025150229
2024-12-18
2025-04-02
Loading full text...

Full text loading...

References

  1. AhmadS. FarazM. FaridA. GhazanfarS. Threatened and endangered medicinal and aromatic plants. In: Ethnobotany and Ethnopharmacology of Medicinal and Aromatic Plants.CRC Press597710.1201/b22842‑4
    [Google Scholar]
  2. AlamgirA.N.M. AlamgirA.N.M. Secondary metabolites: Secondary metabolic products consisting of C and H; C, H, and O; N, S, and P elements; and O/N heterocycles. In: Therapeutic Use of Medicinal Plants and their Extracts.Springer2018Vol. 2165309
    [Google Scholar]
  3. GollapalliP. KumariN.S. ShettyP. GnanasekaranT.S. Molecular basis of AR and STK11 genes associated pathogenesis via AMPK pathway and adipocytokine signalling pathway in the development of metabolic disorders in PCOS women.Beni. Suef Univ. J. Basic Appl. Sci.20221112310.1186/s43088‑022‑00200‑8
    [Google Scholar]
  4. HaraguchiH. KataokaS. OkamotoS. HanafiM. ShibataK. Antimicrobial triterpenes fromIlex integra and the mechanism of antifungal action.Phytother. Res.199913215115610.1002/(SICI)1099‑1573(199903)13:2<151::AID‑PTR391>3.0.CO;2‑C10190191
    [Google Scholar]
  5. PariharP. PariharL. Some pteridophytes of medicinal importance from Rajasthan.Nat Prod Rad.20064297301
    [Google Scholar]
  6. AshrafM.V. PantS. KhanM.A.H. ShahA.A. SiddiquiS. JeridiM. AlhamdiH.W.S. AhmadS. Phytochemicals as antimicrobials: Prospecting Himalayan medicinal plants as source of alternate medicine to combat antimicrobial resistance.Pharmaceuticals (Basel)202316688110.3390/ph1606088137375828
    [Google Scholar]
  7. ShivaM.P. Inventory of forest resources for sustainable management & biodiversity conservation with lists of multipurpose tree species yielding both timber & non-timber forest products (NTFPS), and Shrub & Herb Species of Ntfp Importance.1st edIndus Publishing CompanyNew Delhi, India1998
    [Google Scholar]
  8. IqbalS.H. YousafM. YounusM. A field survey of mycorrhizal associations in ferns of Pakistan.New Phytol.1981871697910.1111/j.1469‑8137.1981.tb01691.x
    [Google Scholar]
  9. SinghM. SinghN. KhareP.B. RawatA.K.S. Antimicrobial activity of some important Adiantum species used traditionally in indigenous systems of medicine.J. Ethnopharmacol.2008115232732910.1016/j.jep.2007.09.01817997240
    [Google Scholar]
  10. SinghD.K. PusalkarP.K. DarG.H. KhurooA.A. Floristic diversity of the Indian Himalaya.Biodiversity of the Himalaya: Jammu and Kashmir State.SpringerSingapore2020Vol. 189312610.1007/978‑981‑32‑9174‑4_5
    [Google Scholar]
  11. SharmaB. VyasM. Ethnobotanical studies on the ferns and fern allies of Rajasthan.Nelumbo.1985271–49091
    [Google Scholar]
  12. BhatM.N. SinghB. SurmalO. SinghB. ShivgotraV. MusarellaC.M. Ethnobotany of the Himalayas: Safeguarding medical practices and traditional uses of Kashmir regions.Biology (Basel)202110985110.3390/biology1009085134571728
    [Google Scholar]
  13. VaouN. StavropoulouE. VoidarouC.C. TsakrisZ. RozosG. TsigalouC. BezirtzoglouE. Interactions between medical plant-derived bioactive compounds: Focus on antimicrobial combination effects.Antibiotics (Basel)2022118101410.3390/antibiotics1108101436009883
    [Google Scholar]
  14. AlamF. KhanS.H.A. AsadM.H.H.B. Phytochemical, antimicrobial, antioxidant and enzyme inhibitory potential of medicinal plant Dryopteris ramosa (Hope) C. Chr.BMC Complementary Med. and Ther.202121119710.1186/s12906‑021‑03370‑734238259
    [Google Scholar]
  15. KootiW. ServatyariK. BehzadifarM. Asadi-SamaniM. SadeghiF. NouriB. Zare MarzouniH. Effective medicinal plant in cancer treatment, part 2: Review study. J. Evidence-Based Complementary Altern.Med.201722982995
    [Google Scholar]
  16. SanthoshP. MukhtarL.A. KamarajM. NithyaT.G. GaneshM.R. AswathyK.A. SadiqM. ShobanaS. NadeemA. LopesB.S. SaravananM. Phytomediated synthesis of copper oxide nanoparticles from floating fern Salvinia cucullata R oxb. and their antibacterial, antioxidant, and anticancer potential.Biomass Convers. Biorefin.2023115
    [Google Scholar]
  17. AhmadS. UllahF. ZebA. AyazM. UllahF. SadiqA. Evaluation of Rumex hastatus D. Don for cytotoxic potential against HeLa and NIH/3T3 cell lines: Chemical characterization of chloroform fraction and identification of bioactive compounds.BMC Complement. Altern. Med.201616130810.1186/s12906‑016‑1302‑y27552817
    [Google Scholar]
  18. Kabidul AzamM.N. RahmanM.M. BiswasS. AhmedM.N. AhmedM. Appraisals of Bangladeshi medicinal plants used by folk medicine practitioners in the prevention and management of malignant neoplastic diseases.Int. Sch. Res. Notices2016201611210.1155/2016/783212027382642
    [Google Scholar]
  19. PiyushaG. ShelarS. ReddyV.K. ShelarG.S. ReddyV. Medicinal value of mangroves and its antimicrobial properties – A review.Can. J. Fish. Aquat. Sci.201262637
    [Google Scholar]
  20. DineshkumarG. RajakumarR. Gas chromatography-mass spectrometry analysis of bioactive components from the ethanol extract of Avicennia marina leaves.Innovare J. Sci.20164912
    [Google Scholar]
  21. BalaS. UniyalG.C. ChattopadhyayS.K. TripathiV. SashidharaK.V. KulshresthaM. SharmaR.P. JainS.P. KukrejaA.K. KumarS. Analysis of taxol and major taxoids in Himalayan yew, Taxus wallichiana.J. Chromatogr. A1999858223924410.1016/S0021‑9673(99)00841‑910551356
    [Google Scholar]
  22. alias AntonysamyJ.M. JanarthananG. RochaJ.E. de AlmeidaR.S. de VasconcelosJ.E.L. dos SantosF.A.V. de FariasP.A.M. CoutinhoH.D.M. Chemical characterization and in vitro anticancer effect of Asplenium aethiopicum (Burm. f.) Becherer.S. Afr. J. Bot.202315437237910.1016/j.sajb.2023.01.035
    [Google Scholar]
  23. VahediM.M. ShahiniA. MottahediM. GarousiS. Shariat RazaviS.A. pouyamaneshG. AfshariA.R. FernsG.A. BahramiA. Harmaline exerts potentially anti-cancer effects on U-87 human malignant glioblastoma cells in vitro.Mol. Biol. Rep.20235054357436610.1007/s11033‑023‑08354‑z36943605
    [Google Scholar]
  24. HendawyB.H.A. 2024. Adiantum pedatum as anticancer, anti-oxidant and anti-inflammatory agent. Bulletin of Faculty of Science.Zagazig University20234158164
    [Google Scholar]
  25. RakkimuthuR. AnanthiP. SathishkumarP. SowmiyaD. Chemical profiling of fern Cheilosoria mysurensis (Wall. ex Hook.) Ching & Shing and its biological activity.Plant Sci. Today20231019195
    [Google Scholar]
  26. NairS.A. Sukumaryamma RemadeviR.K. LalS.S. RajuR. AntonyR. BabyS. Chemical composition and antiproliferative activity of rhizome and frond essential oils of Anemia schimperiana subsp. wightiana, a rare fern endemic to South India.J. Biol. Active Prod. Nat.202313210511710.1080/22311866.2023.2211046
    [Google Scholar]
  27. Selvan GT. AshokA.K. RaoSJA. GollapalliP. RV. NS.K. ChaudhuryN.K. Nrf2-regulated antioxidant response ameliorating ionizing radiation-induced damages explored through in vitro and molecular dynamics simulations.J. Biomol. Struct. Dyn.202341178472848410.1080/07391102.2022.213724536307909
    [Google Scholar]
  28. SaidK. HamayunM. RaufM. KhanS.A. ArifM. AlrefaeiA.F. AlmutairiM.H. AliS. Simultaneous study of analysis of anti-inflammatory potential of Dryopteris ramosa (C. Hope) C. Chr. using GC-Mass and computational modeling on the Xylene-induced ear oedema in mouse model.Curr. Pharm. Des.202329413324333910.2174/011381612829063623112907403938111115
    [Google Scholar]
  29. RechekH. HaouatA. HamaidiaK. PintoD.C.G.A. BoudiarT. VálegaM.S.G.A. PereiraD.M. PereiraR.B. SilvaA.M.S. Inula viscosa (L.) aiton ethanolic extract inhibits the growth of human AGS and A549 cancer cell lines.Chem. Biodivers.2023203e20220089010.1002/cbdv.20220089036786298
    [Google Scholar]
  30. Rahamouz-HaghighiS. SharafiA. Antiproliferative assay of suma or Brazilian ginseng (Hebanthe eriantha) methanolic extract on HCT116 and 4T1 cancer cell lines, in vitro toxicity on Artemia salina larvae, and antibacterial activity.Nat. Prod. Res.202438111850185437337697
    [Google Scholar]
  31. Durán-IturbideN.A. Díaz-EufracioB.I. Medina-FrancoJ.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM.ACS Omega2020526160761608410.1021/acsomega.0c0158132656429
    [Google Scholar]
  32. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  33. GfellerD. GrosdidierA. WirthM. DainaA. MichielinO. ZoeteV. SwissTargetPrediction: A web server for target prediction of bioactive small molecules.Nucleic Acids Res.201442W1W32W3810.1093/nar/gku29324792161
    [Google Scholar]
  34. SchumannC. Medical, nutritional and technological properties of lactulose. An update.Eur. J. Nutr.200241Suppl. 1i17i2510.1007/s00394‑002‑1103‑612420112
    [Google Scholar]
  35. LiehrH. EnglischG. RasenackU. Lactulose-a drug with antiendotoxin effect.Hepatogastroenterology19802753563607009359
    [Google Scholar]
  36. KimS. ThiessenP.A. BoltonE.E. ChenJ. FuG. GindulyteA. HanL. HeJ. HeS. ShoemakerB.A. WangJ. YuB. ZhangJ. BryantS.H. PubChem substance and compound databases.Nucleic Acids Res.201644D1D1202D121310.1093/nar/gkv95126400175
    [Google Scholar]
  37. CsizmadiaP. MarvinSketch and MarvinView: Molecule applets for the world wide web.Proceedings of the 3rd International Electronic Conference on Synthetic Organic ChemistryBasel, Switzerland, November 1999, 1–3010.3390/ecsoc‑3‑01775
    [Google Scholar]
  38. BurleyS.K. BermanH.M. KleywegtG.J. MarkleyJ.L. NakamuraH. VelankarS. Protein Data Bank (PDB): The single global macromolecular structure archive.Methods Mol Biol.20171607627641
    [Google Scholar]
  39. BioviaD.S. Discovery studio visualizer2017Available from: https://discover.3ds.com/discovery-studio-visualizer-download
  40. LaurieA.T.R. JacksonR.M. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites.Bioinformatics20052191908191610.1093/bioinformatics/bti31515701681
    [Google Scholar]
  41. MorrisG.M. GoodsellD.S. HueyR. HartW.E. HallidayS. BelewR. OlsonA.J. Automated docking of flexible ligands to flexible receptors2001Available from: https://www.semanticscholar.org/paper/Automated-Docking-of-Flexible-Ligands-to-Flexible-Morris-Goodsell/44f2a73f4f09296ef816685db143c560f596e610
  42. RaufM.A. ZubairS. AzharA. Ligand docking and binding site analysis with pymol and AutoDock/Vina.Int. J. Basic Appl. Sci.20154216817710.14419/ijbas.v4i2.4123
    [Google Scholar]
  43. LaskowskiR.A. JabłońskaJ. PravdaL. VařekováR.S. ThorntonJ.M. PDBsum: Structural summaries of PDB entries.Protein Sci.201827112913410.1002/pro.328928875543
    [Google Scholar]
  44. HospitalA. AndrioP. FenollosaC. Cicin-SainD. OrozcoM. GelpíJ.L. MDWeb and MDMoby: An integrated web-based platform for molecular dynamics simulations.Bioinformatics20122891278127910.1093/bioinformatics/bts13922437851
    [Google Scholar]
  45. (a MongaloN.I. RaletsenaM.V. MunyaiR. In vitro pharmacological activity, and comparison GC-ToF-MS profiling of extracts from Cissus cornifolia (Baker) planch.Life (Basel)202313372810.3390/life1303072836983882
    [Google Scholar]
  46. (b BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky31829718510
    [Google Scholar]
  47. SadeghiM. MoradiM. MadanchiH. JohariB. In silico study of garlic (Allium sativum L.)-derived compounds molecular interactions with α-glucosidase.In Silico Pharmacol.2021911110.1007/s40203‑020‑00072‑933457179
    [Google Scholar]
  48. JamesJ.P. AilP.D. CrastaL. KamathR.S. ShuraM.H. In silico ADMET and molecular interaction profiles of phytochemicals from medicinal plants in Dakshina KannadaJ Health Allied Sci.2023141
    [Google Scholar]
  49. MohammedA.E. AmeenF. AabedK. SulimanR.S. AlghamdiS.S. SafhiF.A. AlshayaD.S. AlafariH.A. JalalA.S. AlosaimiA.A. AlshamraniS.M. RahmanI. In-silico predicting as a tool to develop plant-based biomedicines and nanoparticles: Lycium shawii metabolites.Biomed. Pharmacother.202215011300810.1016/j.biopha.2022.11300835489282
    [Google Scholar]
  50. GunasekaranM. RaviR. SubramanianK. Molecular docking analysis of lupeol with different cancer targets.Bioinformation202218313414010.6026/9732063001813436518133
    [Google Scholar]
  51. KumariN. SharmaR. YadavA.A. SankpalS.A. RajJ.M. KantS.M.R. Synthesis, XRD, DFT/HF, and molecular docking investigations of 4-(tert-butyl)-4-methoxy-1, 1-biphenyl (4-TBMB).Rasayan J. Chem.202316210.31788/RJC.2023.1628136
    [Google Scholar]
  52. RahimF. PutraP.P. IsmedF. PutraA.E. LucidaH. Molecular dynamics, docking and prediction of absorption, distribution, metabolism and excretion of lycopene as protein inhibitor of BCL2 and DNMT1.Trop. J. Nat. Prod. Res. 20237734393444
    [Google Scholar]
  53. WangZ. YangL. Natural-product-based, carrier-free, noncovalent nanoparticles for tumor chemo-photodynamic combination therapy.Pharmacol. Res.202420310715010.1016/j.phrs.2024.10715038521285
    [Google Scholar]
  54. YangL.Y. LeiS.Z. XuW.J. LaiY-X. ZhangY-Y. WangY. WangZ-L. Rising above: Exploring the therapeutic potential of natural product-based compounds in human cancer treatment.Trad. Med. Res.20251031810.53388/TMR20240618001
    [Google Scholar]
  55. KimE. BaeJ. LeeJ. ShinJ.H. SeokP.R. KimY. YooS.H. Purification and characterization of turanose, a sucrose isomer and its anti-inflammatory effects in dextran sulfate sodium (DSS)-induced colitis model.J. Funct. Foods20196310357010.1016/j.jff.2019.103570
    [Google Scholar]
  56. TimungR. BarikC.R. PurohitS. GoudV.V. Composition and anti-bacterial activity analysis of citronella oil obtained by hydrodistillation: Process optimization study.Ind. Crops Prod.20169417818810.1016/j.indcrop.2016.08.021
    [Google Scholar]
  57. SelvanG.T. GollapalliP. ShettyP. KumariN.S. Exploring key molecular signatures of immune responses and pathways associated with tuberculosis in comorbid diabetes mellitus: A systems biology approach.Beni. Suef Univ. J. Basic Appl. Sci.20221117710.1186/s43088‑022‑00257‑5
    [Google Scholar]
  58. BhattacharyaK. Chandra NathB. AhmedE. KhanalP. ChanuN.R. DekaS. DasD. ShrivastavaA.K. Integration of network pharmacology, molecular docking, and simulations to evaluate phytochemicals from Drymaria cordata against cervical cancer.RSC Advances20241464188420010.1039/D3RA06297J38292259
    [Google Scholar]
  59. SelvanT.G. GollapalliP. KumarS.H.S. GhateS.D. Early diagnostic and prognostic biomarkers for gastric cancer: Systems-level molecular basis of subsequent alterations in gastric mucosa from chronic atrophic gastritis to gastric cancer.J. Genet. Eng. Biotechnol.20232118610.1186/s43141‑023‑00539‑037594635
    [Google Scholar]
  60. HarakehS. AkefeI.O. SaberS.H. alamriT. Al-RaddadiR. Al-JaouniS. TashkandiH. QariM. MoulayM. AldahlawiA. Abd ElmageedZ.Y. MousaS. Nanoformulated 3′-diindolylmethane modulates apoptosis, migration, and angiogenesis in breast cancer cells.Heliyon2024101e2355310.1016/j.heliyon.2023.e2355338187226
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128349549241025150229
Loading
/content/journals/cpd/10.2174/0113816128349549241025150229
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test