Skip to content
2000
Volume 31, Issue 15
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

Nitric oxide (NO) is a low-toxicity and high-efficiency anticancer treatment that can augment the cytotoxicity of doxorubicin (DOX) towards breast cancer cells, thereby exhibiting a favorable effect on chemotherapy sensitization.

Objective

The study aimed to establish a hydrogel that sensitizes chemotherapy by inducing local inflammatory stimulation to change the tumor microenvironment and promote NO production. The purpose of the study was to examine the anti-tumor effect and .

Methods

The functional properties of the composite hydrogels were tested by UV spectrophotometry and NO detection kit. CCK8, DCFH-DA fluorescent probe, Calcein-AM/PI detection kit, and confocal detection methods were used for the cytocompatibility and cytotoxicity of the composite hydrogels. The subcutaneous tumor volume, weight, and tumor inhibition rate of 4T1 breast cancer cells were evaluated for pharmacodynamic study .

Results

Each component of hydrogel has good biocompatibility. The combination of gas therapy and chemotherapy can significantly enhance the effect of inhibiting tumor cell growth. The tumor growth of tumor-bearing mice in the hydrogel administration group was slow, and the tumor inhibition rate was 85.10%. The body weight grew steadily, and no significant pathological changes were observed in the H&E staining of major organs.

Conclusion

A composite hydrogel with alginate as the carrier was successfully established, which was based on improving the tumor microenvironment to trigger gas therapy combined with chemotherapy for tumor treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128348357241209050425
2025-01-15
2025-07-11
Loading full text...

Full text loading...

References

  1. WangK. LiY. WangX. ZhangZ. CaoL. FanX. WanB. LiuF. ZhangX. HeZ. ZhouY. WangD. SunJ. ChenX. Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation.Nat. Commun.2023141295010.1038/s41467‑023‑38601‑737221157
    [Google Scholar]
  2. ChaiJ. ZhuJ. TianY. YangK. LuanJ. WangY. Carbon monoxide therapy: A promising strategy for cancer.J. Mater. Chem. B Mater. Biol. Med.20231191849186510.1039/D2TB02599J36786000
    [Google Scholar]
  3. PascaleR.M. CalvisiD.F. SimileM.M. FeoC.F. FeoF. The Warburg effect 97 years after its discovery.Cancers20201210281910.3390/cancers1210281933008042
    [Google Scholar]
  4. ChenL. ZhouS.F. SuL. SongJ. Gas-mediated cancer bioimaging and therapy.ACS Nano20191310108871091710.1021/acsnano.9b0495431538764
    [Google Scholar]
  5. RamzyA. ElSafyS. ElshokyH.A. SolimanA. YounessR. MansourS. SebakA. Drugless nanoparticles tune-up an array of intertwined pathways contributing to immune checkpoint signaling and metabolic reprogramming in triple-negative breast cancer.Biomed. Mater.20221811836541457
    [Google Scholar]
  6. ZhouG. ChenY. ChenW. WuH. YuY. SunC. HuB. LiuY. Renal clearable catalytic 2D Au-porphyrin coordination polymer augmented photothermal-gas synergistic cancer therapy.Small20231914220674910.1002/smll.20220674936599631
    [Google Scholar]
  7. GuoX. LiuJ. JiangL. GongW. WuH. HeQ. Sulourea-coordinated Pd nanocubes for NIR-responsive photothermal/H2S therapy of cancer.J. Nanobiotechnology202119132110.1186/s12951‑021‑01042‑934649589
    [Google Scholar]
  8. LibertiM.V. LocasaleJ.W. The Warburg effect: How does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.00126778478
    [Google Scholar]
  9. SzabóC. Hydrogen sulphide and its therapeutic potential.Nat. Rev. Drug Discov.200761191793510.1038/nrd242517948022
    [Google Scholar]
  10. QiC. HeJ. FuL.H. HeT. BlumN.T. YaoX. LinJ. HuangP. Tumor-specific activatable nanocarriers with gas-generation and signal amplification capabilities for tumor theranostics.ACS Nano20211511627163910.1021/acsnano.0c0922333356128
    [Google Scholar]
  11. EpsteinT. XuL. GilliesR.J. GatenbyR.A. Separation of metabolic supply and demand: Aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.Cancer Metab.201421710.1186/2049‑3002‑2‑724982758
    [Google Scholar]
  12. LundbergJ.O. WeitzbergE. Nitric oxide signaling in health and disease.Cell2022185162853287810.1016/j.cell.2022.06.01035931019
    [Google Scholar]
  13. AndrabiS.M. SharmaN.S. KaranA. ShahriarS.M.S. CordonB. MaB. XieJ. Nitric oxide: Physiological functions, delivery, and biomedical applications.Adv. Sci.20231030230325910.1002/advs.20230325937632708
    [Google Scholar]
  14. MocellinS. BronteV. NittiD. Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities.Med. Res. Rev.200727331735210.1002/med.2009216991100
    [Google Scholar]
  15. EvigC.B. KelleyE.E. WeydertC.J. ChuY. BuettnerG.R. BurnsP.C. Endogenous production and exogenous exposure to nitric oxide augment doxorubicin cytotoxicity for breast cancer cells but not cardiac myoblasts.Nitric Oxide200410311912910.1016/j.niox.2004.03.00615158691
    [Google Scholar]
  16. AlimoradiH. GreishK. FallahB.A. ALshaibaniL. PittalàV. Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity.Int. J. Nanomedicine2018137771778710.2147/IJN.S18708930538458
    [Google Scholar]
  17. WangF. YuanQ. ChenF. PangJ. PanC. XuF. ChenY. Fundamental mechanisms of the cell death caused by nitrosative stress.Front. Cell Dev. Biol.2021974248310.3389/fcell.2021.74248334616744
    [Google Scholar]
  18. ChoiH.W. KimJ. KimJ. KimY. SongH.B. KimJ.H. KimK. KimW.J. Light-induced acid generation on a gatekeeper for smart nitric oxide delivery.ACS Nano20161044199420810.1021/acsnano.5b0748326953516
    [Google Scholar]
  19. ZhangK. XuH. JiaX. ChenY. MaM. SunL. ChenH. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor.ACS Nano20161012108161082810.1021/acsnano.6b0492128024356
    [Google Scholar]
  20. FanW. LuN. HuangP. LiuY. YangZ. WangS. YuG. LiuY. HuJ. HeQ. QuJ. WangT. ChenX. Glucose-responsive sequential generation of hydrogen peroxide and nitric oxide for synergistic cancer starving-like/gas therapy.Angew. Chem. Int. Ed.20175651229123310.1002/anie.20161068227936311
    [Google Scholar]
  21. KudoS. NagasakiY. A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(l-arginine)-based nanoparticles.J. Control. Release201521725626210.1016/j.jconrel.2015.09.01926386436
    [Google Scholar]
  22. FingerE.C. GiacciaA.J. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease.Canc. Metast. Rev.201029228529310.1007/s10555‑010‑9224‑520393783
    [Google Scholar]
  23. FinkelT. SerranoM. BlascoM.A. The common biology of cancer and ageing.Nat2007448715576777410.1038/nature0598517700693
    [Google Scholar]
  24. van der VlietA. HeiningerJ.Y.M.W. Hydrogen peroxide as a damage signal in tissue injury and inflammation: Murderer, mediator, or messenger?J. Cell. Biochem.2014115342743510.1002/jcb.2468324122865
    [Google Scholar]
  25. YangF. ChenP. HeW. GuN. ZhangX. FangK. ZhangY. SunJ. TongJ. Bubble microreactors triggered by an alternating magnetic field as diagnostic and therapeutic delivery devices.Small20106121300130510.1002/smll.20100017320486225
    [Google Scholar]
  26. FanW. BuW. ShenB. HeQ. CuiZ. LiuY. ZhengX. ZhaoK. ShiJ. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH-/H2O2-responsive UCL imaging and oxygen-elevated synergetic therapy.Adv. Mater.201527284155416110.1002/adma.20140514126058562
    [Google Scholar]
  27. LiuA. WangQ. ZhaoZ. WuR. WangM. LiJ. SunK. SunZ. LvZ. XuJ. JiangH. WanM. ShiD. MaoC. Nitric oxide nanomotor driving exosomes-loaded microneedles for Achilles tendinopathy healing.ACS Nano2021158133391335010.1021/acsnano.1c0317734324304
    [Google Scholar]
  28. GehringJ. TrepkaB. KlinkenbergN. BronnerH. SchleheckD. PolarzS. Sunlight-triggered nanoparticle synergy: Teamwork of reactive oxygen species and nitric oxide released from mesoporous organosilica with advanced antibacterial activity.J. Am. Chem. Soc.201613893076308410.1021/jacs.5b1207326883897
    [Google Scholar]
  29. PanH. ZhangC. WangT. ChenJ. SunS.K. In situ fabrication of intelligent photothermal indocyanine green-alginate hydrogel for localized tumor ablation.ACS Appl. Mater. Interfaces20191132782278910.1021/acsami.8b1651730584767
    [Google Scholar]
  30. AbasalizadehF. MoghaddamS.V. AlizadehE. akbariE. KashaniE. FazljouS.M.B. TorbatiM. AkbarzadehA. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting.J. Biol. Eng.2020141810.1186/s13036‑020‑0227‑732190110
    [Google Scholar]
  31. FrentO. VicasL. DuteanuN. MorgovanC. JurcaT. PallagA. MuresanM. FilipS. LucaciuR.L. MarianE. Sodium alginate—natural microencapsulation material of polymeric microparticles.Int. J. Mol. Sci.202223201210810.3390/ijms23201210836292962
    [Google Scholar]
  32. SellimiS. YounesI. AyedH.B. MaalejH. MonteroV. RinaudoM. DahiaM. MechichiT. HajjiM. NasriM. Structural, physicochemical and antioxidant properties of sodium alginate isolated from a Tunisian brown seaweed.Int. J. Biol. Macromol.2015721358136710.1016/j.ijbiomac.2014.10.01625453289
    [Google Scholar]
  33. HechtH. SrebnikS. Structural characterization of sodium alginate and calcium alginate.Biomacromolecules20161762160216710.1021/acs.biomac.6b0037827177209
    [Google Scholar]
  34. JadachB. ŚwietlikW. FroelichA. Sodium alginate as a pharmaceutical excipient: Novel applications of a well-known polymer.J. Pharm. Sci.202211151250126110.1016/j.xphs.2021.12.02434986359
    [Google Scholar]
  35. HayashiK. SakamotoW. YogoT. Smart ferrofluid with quick gel transformation in tumors for MRI-guided local magnetic thermochemotherapy.Adv. Funct. Mater.201626111708171810.1002/adfm.201504215
    [Google Scholar]
  36. HuangG. QiuY. YangF. XieJ. ChenX. WangL. YangH. Magnetothermally triggered free-radical generation for deep-seated tumor treatment.Nano Lett.20212172926293110.1021/acs.nanolett.1c0000933769824
    [Google Scholar]
  37. MustafaA.H.M. AshryR. KrämerO.H. Monitoring changes in intracellular reactive oxygen species levels in response to histone deacetylase inhibitors.Methods Mol. Biol.2023258933734410.1007/978‑1‑0716‑2788‑4_2236255635
    [Google Scholar]
  38. NitaM. GrzybowskiA. The role of the reactive oxygen species and oxidative stress in the pathomechanism of the age-related ocular diseases and other pathologies of the anterior and posterior eye segments in adults.Oxid. Med. Cell. Longev.201620161316473410.1155/2016/316473426881021
    [Google Scholar]
  39. ClerkinJ.S. NaughtonR. QuineyC. CotterT.G. Mechanisms of ROS modulated cell survival during carcinogenesis.Cancer Lett.20082661303610.1016/j.canlet.2008.02.02918372105
    [Google Scholar]
  40. GuoR. TianY. WangY. YangW. Near-infrared laser-triggered nitric oxide nanogenerators for the reversal of multidrug resistance in cancer.Adv. Funct. Mater.20172713160639810.1002/adfm.201606398
    [Google Scholar]
  41. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  42. BarzamanK. KaramiJ. ZareiZ. HosseinzadehA. KazemiM.H. KalbolandiM.S. SafariE. FarahmandL. Breast cancer: Biology, biomarkers, and treatments.Int. Immunopharmacol.20208410653510.1016/j.intimp.2020.10653532361569
    [Google Scholar]
  43. YanZ. LaiZ. LinJ. Anticancer properties of traditional Chinese medicine.Comb. Chem. High Throughput Screen.201720542342928093974
    [Google Scholar]
  44. HarbeckN. GnantM. Breast cancer.Lancet2017389100741134115010.1016/S0140‑6736(16)31891‑827865536
    [Google Scholar]
  45. SeverinoP. da SilvaC.F. AndradeL.N. OliveiraL.D. CamposJ. SoutoE.B. Alginate nanoparticles for drug delivery and targeting.Curr. Pharm. Des.201925111312133410.2174/138161282566619042516342431465282
    [Google Scholar]
  46. WuF. PangY. LiuJ. Swelling-strengthening hydrogels by embedding with deformable nanobarriers.Nat. Commun.2020111450210.1038/s41467‑020‑18308‑932908136
    [Google Scholar]
  47. CanliÖ. NicolasA.M. GuptaJ. FinkelmeierF. GoncharovaO. PesicM. NeumannT. HorstD. LöwerM. SahinU. GretenF.R. Myeloid cell-derived reactive oxygen species induce epithelial mutagenesis.Cancer Cell2017326869883.e510.1016/j.ccell.2017.11.00429232557
    [Google Scholar]
  48. WagnerJ. RapsomanikiM.A. ChevrierS. AnzenederT. LangwiederC. DykgersA. ReesM. RamaswamyA. MuenstS. SoysalS.D. JacobsA. WindhagerJ. SilinaK. van den BroekM. DedesK.J. MartínezR.M. WeberW.P. BodenmillerB. A single-cell atlas of the tumor and immune ecosystem of human breast cancer.Cell2019177513301345.e1810.1016/j.cell.2019.03.00530982598
    [Google Scholar]
  49. JainR.K. Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy.Nat. Med.20017998798910.1038/nm0901‑98711533692
    [Google Scholar]
  50. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.01321376230
    [Google Scholar]
  51. de VisserK.E. JoyceJ.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth.Cancer Cell202341337440310.1016/j.ccell.2023.02.01636917948
    [Google Scholar]
  52. HoK.W. LiuY.L. LiaoT.Y. LiuE.S. ChengT.L. Strategies for non- covalent attachment of antibodies to PEGylated nanoparticles for targeted drug delivery.Int. J. Nanomedicine202419100451006410.2147/IJN.S47927039371476
    [Google Scholar]
  53. XiaoY. YuD. Tumor microenvironment as a therapeutic target in cancer.Pharmacol. Ther.202122110775310.1016/j.pharmthera.2020.10775333259885
    [Google Scholar]
  54. DeepakK.G.K. VempatiR. NagarajuG.P. DasariV.R. SN. RaoD.N. MallaR.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer.Pharmacol. Res.202015310468310.1016/j.phrs.2020.10468332050092
    [Google Scholar]
  55. LiC. WangJ. WangY. GaoH. WeiG. HuangY. YuH. GanY. WangY. MeiL. ChenH. HuH. ZhangZ. JinY. Recent progress in drug delivery.Acta Pharm. Sin. B2019961145116210.1016/j.apsb.2019.08.00331867161
    [Google Scholar]
  56. FrankeF. MichlíkováS. AlandS. SchughartK.L.A. BöhmeV.A. LangeS. Efficient radial-shell model for 3D tumor spheroid dynamics with radiotherapy.Cancers20231523564510.3390/cancers1523564538067348
    [Google Scholar]
  57. WeiD. YanJ. CaoZ. HanS. SunY. Nucleus-targeting Oxaplatin(IV) prodrug Amphiphile for enhanced chemotherapy and immunotherapy.J. Control. Release202437321622310.1016/j.jconrel.2024.07.02839002797
    [Google Scholar]
  58. YuS. ZhangL. YangY. WangM. LiuT. JiW. LiuY. LvH. ZhaoY. ChenX. HuT. Polydopamine-based resveratrol-hyaluronidase nanomedicine inhibited pancreatic cancer cell invasive phenotype in hyaluronic acid enrichment tumor sphere model.ACS Pharmacol. Transl. Sci.2024741013102210.1021/acsptsci.3c0030438633596
    [Google Scholar]
  59. RanY. HanS. GaoD. ChenX. LiuC. Interference of FZD2 suppresses proliferation, vasculogenic mimicry and stemness in glioma cells via blocking the Notch/NF-κB signaling pathway.Exp. Ther. Med.202428437310.3892/etm.2024.1266239091630
    [Google Scholar]
  60. CostaA. ForteI.M. PentimalliF. IannuzziC.A. AlfanoL. CaponeF. CamerlingoR. CalabreseA. von ArxC. DominguezB.R. QuintilianiM. De LaurentiisM. MorrioneA. GiordanoA. Pharmacological inhibition of CDK4/6 impairs diffuse pleural mesothelioma 3D spheroid growth and reduces viability of cisplatin-resistant cells.Front. Oncol.202414141895110.3389/fonc.2024.141895139011477
    [Google Scholar]
  61. GhiandaiV. GrassiE.S. GazzanoG. FugazzolaL. PersaniL. Characterization of EpCAM in thyroid cancer biology by three-dimensional spheroids in vitro model.Cancer Cell Int.202424119610.1186/s12935‑024‑03378‑238835027
    [Google Scholar]
  62. FadilS. AljoudF. YonbawiA. AlmalkiA. HareeriR. AshiA. AlQriqriM. BawazirN. AlshangitiH. ShaalaL. YoussefD. AlkhilaiwiF. Red sea sponge Callyspongia siphonella extract induced growth inhibition and apoptosis in breast MCF-7 and hepatic HepG-2 cancer cell lines in 2D and 3D cell cultures.OncoTargets Ther.20241752153610.2147/OTT.S46708338948385
    [Google Scholar]
  63. CostaE.C. MoreiraA.F. DiogoM.D. GasparV.M. CarvalhoM.P. CorreiaI.J. 3D tumor spheroids: An overview on the tools and techniques used for their analysis.Biotechnol. Adv.20163481427144110.1016/j.biotechadv.2016.11.00227845258
    [Google Scholar]
  64. KattM.E. PlaconeA.L. WongA.D. XuZ.S. SearsonP.C. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform.Front. Bioeng. Biotechnol.201641210.3389/fbioe.2016.0001226904541
    [Google Scholar]
  65. JensenC. TengY. Is it time to start transitioning from 2D to 3D cell culture?Front. Mol. Biosci.202073310.3389/fmolb.2020.0003332211418
    [Google Scholar]
  66. ShermanH. GitschierH.J. RossiA.E. A novel three-dimensional immune oncology model for high-throughput testing of tumoricidal activity.Front. Immunol.2018985710.3389/fimmu.2018.0085729740450
    [Google Scholar]
  67. WeiswaldL.B. BelletD. MarieD.V. Spherical cancer models in tumor biology.Neoplasia201517111510.1016/j.neo.2014.12.00425622895
    [Google Scholar]
  68. LiuJ. HongM. LiY. ChenD. WuY. HuY. Programmed cell death tunes tumor immunity.Front. Immunol.20221384734510.3389/fimmu.2022.84734535432318
    [Google Scholar]
  69. KopeinaG.S. ZhivotovskyB. Programmed cell death: Past, present and future.Biochem. Biophys. Res. Commun.2022633555810.1016/j.bbrc.2022.09.02236344162
    [Google Scholar]
  70. KaganV.E. TyurinV.A. JiangJ. TyurinaY.Y. RitovV.B. AmoscatoA.A. OsipovA.N. BelikovaN.A. KapralovA.A. KiniV. VlasovaI.I. ZhaoQ. ZouM. DiP. SvistunenkoD.A. KurnikovI.V. BorisenkoG.G. Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors.Nat. Chem. Biol.20051422323210.1038/nchembio72716408039
    [Google Scholar]
  71. ZuoY. XiangB. YangJ. SunX. WangY. CangH. YiJ. Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1.Cell Res.200919444945710.1038/cr.2009.1919238172
    [Google Scholar]
  72. PerezP.L. DespouyG. MourrouxD.R. GuittautB.M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy.Redox Biol.2015418419210.1016/j.redox.2014.12.00325590798
    [Google Scholar]
  73. BonavidaB. GarbanH. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics.Redox Biol.2015648649410.1016/j.redox.2015.08.01326432660
    [Google Scholar]
  74. ReynoldsM.M. WitzelingS.D. DamodaranV.B. MedeirosT.N. KnodleR.D. EdwardsM.A. LookianP.P. BrownM.A. Applications for nitric oxide in halting proliferation of tumor cells.Biochem. Biophys. Res. Commun.2013431464765110.1016/j.bbrc.2013.01.04123337501
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128348357241209050425
Loading
/content/journals/cpd/10.2174/0113816128348357241209050425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test