Skip to content
2000
Volume 31, Issue 13
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

(KP) is a common and highly pathogenic pathogen, which often causes several serious infections in humans. The rampant and inappropriate use of broad-spectrum antibiotics has fueled a worrisome surge in Multidrug Resistance (MDR) among the strains of , which has significantly boosted the risk and complexity of nosocomial infection transmission in clinical settings. Consequently, this situation presents a substantial challenge to the efficacy of anti-infective treatments, making the development of new and innovative therapeutic approaches important. Bacteriophages (phages) are viruses that can infect and kill bacteria. They and their derived products are now being considered as promising alternatives or adjuncts to antimicrobial therapies for treating bacterial infections in humans, which exhibit a remarkable safety profile and precise host specificity. Numerous studies have also unequivocally demonstrated the remarkable potential of phages in effectively combating MDR infections both and . These studies have explored various approaches to phages, such as phage cocktails, phage-derived enzymes, and the synergistic utilization of phages and antibiotics. Therefore, phage therapy is old but not obsolete, particularly in light of the escalating problem of antimicrobial-resistant infections. Here, we have presented a comprehensive summary of the current knowledge on phage therapy for infections, including phage distribution, characterization of phages, investigations, and cases of clinical study. This review highlights the rapid advancements in phage therapy for , offering a promising avenue for combating this global public health threat.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128343976241117183624
2025-01-02
2025-03-30
Loading full text...

Full text loading...

References

  1. PaczosaM.K. MecsasJ. Klebsiella pneumoniae: Going on the offense with a strong defense.Microbiol. Mol. Biol. Rev.201680362966110.1128/MMBR.00078‑1527307579
    [Google Scholar]
  2. RussoT.A. MarrC.M. Hypervirulent Klebsiella pneumoniae.Clin. Microbiol. Rev.2019323e000011910.1128/CMR.00001‑1931092506
    [Google Scholar]
  3. ShonA.S. BajwaR.P.S. RussoT.A. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae.Virulence20134210711810.4161/viru.2271823302790
    [Google Scholar]
  4. ZhangY. ZhaoC. WangQ. WangX. ChenH. LiH. ZhangF. LiS. WangR. WangH. High prevalence of Hypervirulent Klebsiella pneumoniae infection in China: Geographic distribution, clinical characteristics, and antimicrobial resistance.Antimicrob. Agents Chemother.201660106115612010.1128/AAC.01127‑1627480857
    [Google Scholar]
  5. HuY. PingY. LiL. XuH. YanX. DaiH. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients.J. Infect. Dev. Ctries.201610320821310.3855/jidc.669727031451
    [Google Scholar]
  6. Papp-WallaceK.M. EndimianiA. TaracilaM.A. BonomoR.A. Carbapenems: Past, present, and future.Antimicrob. Agents Chemother.201155114943496010.1128/AAC.00296‑1121859938
    [Google Scholar]
  7. BassettiM. RighiE. CarneluttiA. GrazianoE. RussoA. Multidrug-resistant Klebsiella pneumoniae: Challenges for treatment, prevention and infection control.Expert Rev. Anti Infect. Ther.2018161074976110.1080/14787210.2018.152224930207815
    [Google Scholar]
  8. DavidS. ReuterS. HarrisS.R. GlasnerC. FeltwellT. ArgimonS. AbudahabK. GoaterR. GianiT. ErricoG. AspburyM. SjunneboS. KoraqiA. LacejD. ApfalterP. HartlR. GlupczynskiY. HuangT-D. StratevaT. Marteva-ProevskaY. AndrasevicA.T. ButicI. Pieridou-BagatzouniD. Maikanti-CharalampousP. HrabakJ. ZemlickovaH. HammerumA. JakobsenL. IvanovaM. PavelkovichA. JalavaJ. ÖsterbladM. DortetL. VauxS. KaaseM. GatermannS.G. VatopoulosA. TryfinopoulouK. TóthÁ. JánváriL. BooT.W. McGrathE. CarmeliY. AdlerA. PantostiA. MonacoM. RakaL. KurtiA. BalodeA. SauleM. MiciulevicieneJ. MierauskaiteA. Perrin-WenigerM. ReichertP. NestorovaN. DebattistaS. MijovicG. LopicicM. SamuelsenØ. HaldorsenB. ZabickaD. LiterackaE. CaniçaM. ManageiroV. KaftandzievaA. Trajkovska-DokicE. DamianM. LixandruB. JelesicZ. TrudicA. NiksM. SchreterovaE. PirsM. CerarT. OteoJ. AracilB. GiskeC. SjöströmK. GürD. CakarA. WoodfordN. HopkinsK. WiuffC. BrownD.J. FeilE.J. RossoliniG.M. AanensenD.M. GrundmannH. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread.Nat. Microbiol.20194111919192910.1038/s41564‑019‑0492‑831358985
    [Google Scholar]
  9. Gomez-SimmondsA. UhlemannA.C. Clinical implications of genomic adaptation and evolution of carbapenem-resistant Klebsiella pneumoniae.J. Infect. Dis.2017215Suppl. 1S18S2710.1093/infdis/jiw37828375514
    [Google Scholar]
  10. CejasD. Fernández CanigiaL. Rincón CruzG. ElenaA.X. MaldonadoI. GutkindG.O. RadiceM.A. First isolate of KPC-2-producing Klebsiella pneumonaie sequence type 23 from the Americas.J. Clin. Microbiol.20145293483348510.1128/JCM.00726‑1425031447
    [Google Scholar]
  11. DongN. LinD. ZhangR. ChanE.W.C. ChenS. Carriage of blaKPC-2 by a virulence plasmid in hypervirulent Klebsiella pneumoniae.J. Antimicrob. Chemother.201873123317332110.1093/jac/dky35830239821
    [Google Scholar]
  12. LiuB.T. SuW.Q. Whole genome sequencing of NDM-1-producing serotype K1 ST23 hypervirulent Klebsiella pneumoniae in China.J. Med. Microbiol.201968686687310.1099/jmm.0.00099631107201
    [Google Scholar]
  13. Mohammad Ali TabriziA. BadmastiF. ShahcheraghiF. AziziO. Outbreak of hypervirulent Klebsiella pneumoniae harbouring blaVIM-2 among mechanically-ventilated drug-poisoning patients with high mortality rate in Iran.J. Glob. Antimicrob. Resist.201815939810.1016/j.jgar.2018.06.02029981456
    [Google Scholar]
  14. GuD. LvH. SunQ. ShuL. ZhangR. Emergence of tet(A) and blaKPC-2 co-carrying plasmid from a ST11 hypervirulent Klebsiella pneumoniae isolate in patient’s gut.Int. J. Antimicrob. Agents201852230730810.1016/j.ijantimicag.2018.06.00329898411
    [Google Scholar]
  15. ShuL. DongN. LuJ. ZhengZ. HuJ. ZengW. SunQ. ChanE.W.C. ZhouH. HuF. ChenS. ZhangR. Emergence of OXA-232 carbapenemase-producing Klebsiella pneumoniae that carries a pLVPK-like virulence plasmid among elderly patients in China.Antimicrob. Agents Chemother.2019633e022461810.1128/AAC.02246‑1830559135
    [Google Scholar]
  16. XieM. YangX. XuQ. YeL. ChenK. ZhengZ. DongN. SunQ. ShuL. GuD. ChanE.W.C. ZhangR. ChenS. Clinical evolution of ST11 carbapenem resistant and hypervirulent Klebsiella pneumoniae.Commun. Biol.20214165010.1038/s42003‑021‑02148‑434075192
    [Google Scholar]
  17. WHO Bacterial Priority Pathogens List, 2024World Health Organization2024
    [Google Scholar]
  18. RiosA.C. MoutinhoC.G. PintoF.C. Del FiolF.S. JozalaA. ChaudM.V. VilaM.M.D.C. TeixeiraJ.A. BalcãoV.M. Alternatives to overcoming bacterial resistances: State-of-the-art.Microbiol. Res.2016191518010.1016/j.micres.2016.04.00827524653
    [Google Scholar]
  19. García-ContrerasR. Martínez-VázquezM. González-PedrajoB. Castillo-JuárezI. Alternatives to combat bacterial infections.Front. Microbiol.20221390986610.3389/fmicb.2022.90986635602022
    [Google Scholar]
  20. KortrightK.E. ChanB.K. KoffJ.L. TurnerP.E. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria.Cell Host Microbe201925221923210.1016/j.chom.2019.01.01430763536
    [Google Scholar]
  21. DublanchetA. FrucianoE. A short history of phage therapy.Med. Mal. Infect.200838841542010.1016/j.medmal.2008.06.01618692974
    [Google Scholar]
  22. AzamA.H. TanX.E. VeeranarayananS. KigaK. CuiL. Bacteriophage technology and modern medicine.Antibiotics (Basel)202110899910.3390/antibiotics1008099934439049
    [Google Scholar]
  23. HutchingsM.I. TrumanA.W. WilkinsonB. Antibiotics: Past, present and future.Curr. Opin. Microbiol.201951728010.1016/j.mib.2019.10.00831733401
    [Google Scholar]
  24. HerridgeW.P. ShibuP. O’SheaJ. BrookT.C. HoylesL. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses.J. Med. Microbiol.202069217619431976857
    [Google Scholar]
  25. MohammadiM. SaffariM. SiadatS.D. Phage therapy of antibiotic-resistant strains of Klebsiella pneumoniae, opportunities and challenges from the past to the future.Folia Microbiol. (Praha)202368335736810.1007/s12223‑023‑01046‑y37036571
    [Google Scholar]
  26. KondoK. NakanoS. HisatsuneJ. SugawaraY. KataokaM. KayamaS. SugaiM. KawanoM. Characterization of 29 newly isolated bacteriophages as a potential therapeutic agent against IMP-6-producing Klebsiella pneumoniae from clinical specimens.Microbiol. Spectr.2023115e047612210.1128/spectrum.04761‑2237724861
    [Google Scholar]
  27. ZakiB.M. HusseinA.H. HakimT.A. FayezM.S. El-ShibinyA. Phages for treatment of Klebsiella pneumoniae infections.Prog. Mol. Biol. Transl. Sci.202320020723910.1016/bs.pmbts.2023.03.00737739556
    [Google Scholar]
  28. TahaO.A. ConnertonP.L. ConnertonI.F. El-ShibinyA. Bacteriophage ZCKP1: A potential treatment for Klebsiella pneumoniae isolated from diabetic foot patients.Front. Microbiol.20189212710.3389/fmicb.2018.0212730254618
    [Google Scholar]
  29. FangC. DaiX. XiangL. QiuY. YinM. FuY. LiY. ZhangL. Isolation and characterization of three novel lytic phages against K54 serotype carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front. Cell. Infect. Microbiol.202313126501110.3389/fcimb.2023.126501138149011
    [Google Scholar]
  30. DuarteJ. MáximoC. CostaP. OliveiraV. GomesN.C.M. RomaldeJ.L. PereiraC. AlmeidaA. Potential of an isolated Bacteriophage to inactivate Klebsiella pneumoniae: Preliminary studies to control urinary tract infections.Antibiotics (Basel)202413219510.3390/antibiotics1302019538391581
    [Google Scholar]
  31. PengQ. MaZ. HanQ. XiangF. WangL. ZhangY. ZhaoY. LiJ. XianY. YuanY. Characterization of bacteriophage vB_KleM_KB2 possessing high control ability to pathogenic Klebsiella pneumoniae.Sci. Rep.2023131981510.1038/s41598‑023‑37065‑537330608
    [Google Scholar]
  32. ZhangG. LiuY. WangJ. LiN. HanP. ChenY. XuW. LiuC. Characterization and genomic analysis of a novel bacteriophage BUCT_49532 lysing Klebsiella pneumoniae.Virus Genes202359685286710.1007/s11262‑023‑02033‑837857999
    [Google Scholar]
  33. LiM. GuoM. ChenL. ZhuC. XiaoY. LiP. GuoH. ChenL. ZhangW. DuH. Isolation and characterization of novel lytic bacteriophages infecting epidemic carbapenem-resistant Klebsiella pneumoniae strains.Front. Microbiol.202011155410.3389/fmicb.2020.0155432793133
    [Google Scholar]
  34. Concha-ElokoR. Barberán-MartínezP. SanjuánR. Domingo- CalapP. Broad-range capsule-dependent lytic Sugarlandvirus against Klebsiella sp.Microbiol. Spectr.2023116e042982210.1128/spectrum.04298‑2237882584
    [Google Scholar]
  35. IchikawaM. NakamotoN. Kredo-RussoS. WeinstockE. WeinerI.N. KhabraE. Ben-IshaiN. InbarD. KowalsmanN. MordochR. NicenboimJ. GolemboM. ZakN. JablonskaJ. Sberro-LivnatH. NavokS. BuchshtabN. SuzukiT. MiyamotoK. TerataniT. FujimoriS. AotoY. KondaM. HayashiN. ChuP.S. TanikiN. MorikawaR. KasugaR. TabuchiT. SugimotoS. MikamiY. ShiotaA. BassanM. KanaiT. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis.Nat. Commun.2023141326110.1038/s41467‑023‑39029‑937277351
    [Google Scholar]
  36. FengY. FangQ. LuoH. LiJ. YinX. ZongZ. Safety and efficacy of a phage cocktail on murine wound infections caused by carbapenem-resistant Klebsiella pneumoniae.Int. J. Antimicrob. Agents202463210708810.1016/j.ijantimicag.2024.10708838218324
    [Google Scholar]
  37. FedericiS Kredo-RussoS Valdés-MasR KviatcovskyD WeinstockE MatiuhinY SilberbergY AtarashiK FuruichiM OkaA Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammationCell20221851628792898
    [Google Scholar]
  38. CorbellinoM. KiefferN. KutateladzeM. BalarjishviliN. LeshkasheliL. AskilashviliL. TsertsvadzeG. RimoldiS.G. NizharadzeD. HoyleN. NadareishviliL. AntinoriS. PaganiC. ScorzaD.G. RomanòA.L.L. ArdizzoneS. DanelliP. GismondoM.R. GalliM. NordmannP. PoirelL. Eradication of a multidrug-resistant, carbapenemase-producing Klebsiella pneumoniae isolate following oral and intra-rectal therapy with a custom made, lytic bacteriophage preparation.Clin. Infect. Dis.20207091998200110.1093/cid/ciz78231414123
    [Google Scholar]
  39. GuerraM.E.S. DestroG. VieiraB. LimaA.S. FerrazL.F.C. HakanssonA.P. DarrieuxM. ConversoT.R. Klebsiella pneumoniae biofilms and their role in disease pathogenesis.Front. Cell. Infect. Microbiol.20221287799510.3389/fcimb.2022.87799535646720
    [Google Scholar]
  40. ZurabovF. GlazunovE. KochetovaT. UskevichV. PopovaV. Bacteriophages with depolymerase activity in the control of antibiotic resistant Klebsiella pneumoniae biofilms.Sci. Rep.20231311518810.1038/s41598‑023‑42505‑337704798
    [Google Scholar]
  41. ChenW. HanL.M. ChenX.Z. YiP.C. LiH. RenY.Y. GaoJ.H. ZhangC.Y. HuangJ. WangW.X. HuZ.L. HuC.M. Engineered endolysin of Klebsiella pneumoniae phage is a potent and broad-spectrum bactericidal agent against “ESKAPEE” pathogens.Front. Microbiol.202415139783010.3389/fmicb.2024.139783038784808
    [Google Scholar]
  42. SaqrE. SadikM.W. El-DidamonyG. AskoraA. Analysis of a new phage, KZag1, infecting biofilm of Klebsiella pneumoniae: genome sequence and characterization.BMC Microbiol.202424121110.1186/s12866‑024‑03355‑938877452
    [Google Scholar]
  43. WintachaiP. NaknaenA. ThammaphetJ. PomwisedR. PhaonakropN. RoytrakulS. SmithD.R. Characterization of extended-spectrum-β-lactamase producing Klebsiella pneumoniae phage KP1801 and evaluation of therapeutic efficacy in vitro and in vivo.Sci. Rep.20201011180310.1038/s41598‑020‑68702‑y32678251
    [Google Scholar]
  44. LiM. LiP. ChenL. GuoG. XiaoY. ChenL. DuH. ZhangW. Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect.Virus Genes202157543444210.1007/s11262‑021‑01847‑834156584
    [Google Scholar]
  45. JamalM. HussainT. DasC.R. AndleebS. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm.J. Med. Microbiol.201564445446210.1099/jmm.0.00004025681321
    [Google Scholar]
  46. GrossmanA.B. BurginD.J. RiceK.C. Quantification of Staphylococcus aureus biofilm formation by crystal violet and confocal microscopy. Staphylococcus aureus:Methods Mol. Biol.20212341697810.1007/978‑1‑0716‑1550‑8_934264462
    [Google Scholar]
  47. MulaniM.S. KumkarS.N. PardesiK.R. Characterization of novel Klebsiella phage PG14 and its antibiofilm efficacy.Microbiol. Spectr.2022106e019942210.1128/spectrum.01994‑2236374021
    [Google Scholar]
  48. Gómez-OchoaS.A. PittonM. ValenteL.G. Sosa VesgaC.D. LargoJ. Quiroga-CentenoA.C. Hernández VargasJ.A. Trujillo-CáceresS.J. MukaT. CameronD.R. QueY.A. Efficacy of phage therapy in preclinical models of bacterial infection: A systematic review and meta-analysis.Lancet Microbe2022312e956e96810.1016/S2666‑5247(22)00288‑936370748
    [Google Scholar]
  49. TangM. YaoZ. LiuY. MaZ. ZhaoD. MaoZ. WangY. ChenL. ZhouT. Host immunity involvement in the outcome of phage therapy against hypervirulent Klebsiella pneumoniae infections.Antimicrob. Agents Chemother.202468e014292310.1128/aac.01429‑2338742895
    [Google Scholar]
  50. ZhaoR. JiangS. RenS. YangL. HanW. GuoZ. GuJ. A novel phage putative depolymerase, Depo16, has specific activity against K1 capsular-type Klebsiella pneumoniae.Appl. Environ. Microbiol.2024904e011972310.1128/aem.01197‑2338551353
    [Google Scholar]
  51. LiangZ. ShiY.L. PengY. XuC. ZhangC. ChenY. LuoX.Q. LiQ.M. ZhaoC.L. LeiJ. YuanZ.Q. PengY.Z. SongB.Q. GongY.L. BL02, a phage against carbapenem- and polymyxin-B resistant Klebsiella pneumoniae, isolated from sewage: A preclinical study.Virus Res.202333119912610.1016/j.virusres.2023.19912637105436
    [Google Scholar]
  52. KelishomiF.Z. NikkhahiF. AmerehS. GhayyazF. MarashiS.M.A. JavadiA. ShahbaziG. KhakpourM. Evaluation of the therapeutic effect of a novel bacteriophage in the healing process of infected wounds with Klebsiella pneumoniae in mice.J. Glob. Antimicrob. Resist.20243637137810.1016/j.jgar.2024.01.01838307250
    [Google Scholar]
  53. RahimiS. BakhtM. JavadiA. ForoughiF. MarashiS.M.A. NikkhahiF. Characterization of novel bacteriophage PSKP16 and its therapeutic potential against β-lactamase and biofilm producer strain of K2-Hypervirulent Klebsiella pneumoniae pneumonia infection in mice model.BMC Microbiol.202323123310.1186/s12866‑023‑02979‑737612659
    [Google Scholar]
  54. PuM. LiY. HanP. LinW. GengR. QuF. AnX. SongL. TongY. ZhangS. CaiZ. FanH. Genomic characterization of a new phage BUCT541 against Klebsiella pneumoniae K1-ST23 and efficacy assessment in mouse and Galleria mellonella larvae.Front. Microbiol.20221395073710.3389/fmicb.2022.95073736187954
    [Google Scholar]
  55. LuB. YaoX. HanG. LuoZ. ZhangJ. YongK. WangY. LuoY. YangZ. RenM. CaoS. Isolation of Klebsiella pneumoniae phage vB_KpnS_MK54 and pathological assessment of endolysin in the treatment of pneumonia mice model.Front. Microbiol.20221385490810.3389/fmicb.2022.85490835387089
    [Google Scholar]
  56. LiangB. HanB. ShiY. LiX. ZhaoW. KastelicJ. GaoJ. Effective of phage cocktail against Klebsiella pneumoniae infection of murine mammary glands.Microb. Pathog.202318210621810.1016/j.micpath.2023.10621837422172
    [Google Scholar]
  57. EulerC.W. RazA. HernandezA. SerranoA. XuS. AnderssonM. ZouG. ZhangY. FischettiV.A. LiJ. PlyKp104, a novel phage lysin for the treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and other gram-negative ESKAPE pathogens.Antimicrob. Agents Chemother.2023675e015192210.1128/aac.01519‑2237098944
    [Google Scholar]
  58. WuJ.W. WangJ.T. LinT.L. LiuY.Z. WuL.T. PanY.J. Identification of three capsule depolymerases in a bacteriophage infecting Klebsiella pneumoniae capsular types K7, K20, and K27 and therapeutic application.J. Biomed. Sci.20233013110.1186/s12929‑023‑00928‑037210493
    [Google Scholar]
  59. CaiR. RenZ. ZhaoR. LuY. WangX. GuoZ. SongJ. XiangW. DuR. ZhangX. HanW. RuH. GuJ. Structural biology and functional features of phage-derived depolymerase Depo32 on Klebsiella pneumoniae with K2 serotype capsular polysaccharides.Microbiol. Spectr.2023115e053042210.1128/spectrum.05304‑2237750730
    [Google Scholar]
  60. BaiJ. ZhangF. LiangS. ChenQ. WangW. WangY. Martín-RodríguezA.J. SjölingÅ. HuR. ZhouY. Isolation and characterization of vB_kpnM_17-11, a novel phage efficient against carbapenem-resistant Klebsiella pneumoniae.Front. Cell. Infect. Microbiol.20221289753110.3389/fcimb.2022.89753135865823
    [Google Scholar]
  61. Al-MadbolyL.A. AbdelazizA.A. Abo-KamerA.M. NosairA.M. AbdelkaderK. Characterization and genomic analysis of novel bacteriophage NK20 to revert colistin resistance and combat pandrug-resistant Klebsiella pneumoniae in a rat respiratory infection model.Life Sci.202332212163910.1016/j.lfs.2023.12163937001805
    [Google Scholar]
  62. GanL. FengY. DuB. FuH. TianZ. XueG. YanC. CuiX. ZhangR. CuiJ. zhaoH. FengJ. XuZ. FanZ. FuT. DuS. LiuS. ZhangQ. YuZ. SunY. YuanJ. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae.Nat. Commun.2023141321510.1038/s41467‑023‑39028‑w37270557
    [Google Scholar]
  63. HanP. PuM. LiY. FanH. TongY. Characterization of bacteriophage BUCT631 lytic for K1 Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae.Virol. Sin.202338580181210.1016/j.virs.2023.07.00237419417
    [Google Scholar]
  64. AssafiriO. SongA.A.L. TanG.H. HanishI. HashimA.M. YusoffK. Klebsiella virus UPM2146 lyses multiple drug-resistant Klebsiella pneumoniae in vitro and in vivo.PLoS One2021161e024535410.1371/journal.pone.024535433418559
    [Google Scholar]
  65. SundaramoorthyN.S. ThothathriS. BhaskaranM. GaneshPrasadA.K. NagarajanS. Phages from Ganges river curtail in vitro biofilms and planktonic growth of drug resistant Klebsiella pneumoniae in a zebrafish infection model.AMB Express20211112710.1186/s13568‑021‑01181‑0
    [Google Scholar]
  66. MirzaK.A. NietzscheS. MakarewiczO. PletzM.W. ThiemeL. Bacteriophage-mediated decolonization of Klebsiella pneumoniae in a novel Galleria mellonella gut colonization model with Enterobacteriaceae.Sci. Rep.202414131810.1038/s41598‑023‑50823‑938172281
    [Google Scholar]
  67. LiP. GuoG. ZhengX. XuS. ZhouY. QinX. HuZ. YuY. TanZ. MaJ. ChenL. ZhangW. Therapeutic efficacy of a K5-specific phage and depolymerase against Klebsiella pneumoniae in a mouse model of infection.Vet. Res.20245515910.1186/s13567‑024‑01311‑z38715095
    [Google Scholar]
  68. LiM. WangH. ChenL. GuoG. LiP. MaJ. ChenR. DuH. LiuY. ZhangW. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice.Virol. Sin.202237453854610.1016/j.virs.2022.04.00535513275
    [Google Scholar]
  69. SuhG.A. LodiseT.P. TammaP.D. KniselyJ.M. AlexanderJ. AslamS. BartonK.D. BizzellE. TottenK.M.C. CampbellJ.L. ChanB.K. CunninghamS.A. GoodmanK.E. Greenwood-QuaintanceK.E. HarrisA.D. HesseS. MaressoA. NussenblattV. PrideD. RybakM.J. SundZ. van DuinD. Van TyneD. PatelR. Considerations for the use of phage therapy in clinical practice.Antimicrob. Agents Chemother.2022663e020712110.1128/aac.02071‑2135041506
    [Google Scholar]
  70. LeitnerL. UjmajuridzeA. ChanishviliN. GoderdzishviliM. ChkoniaI. RigvavaS. ChkhotuaA. ChangashviliG. McCallinS. SchneiderM.P. LiechtiM.D. MehnertU. BachmannL.M. SybesmaW. KesslerT.M. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: A randomised, placebo- controlled, double-blind clinical trial.Lancet Infect. Dis.202121342743610.1016/S1473‑3099(20)30330‑332949500
    [Google Scholar]
  71. LiJ YanB HeB LiL ZhouX WuN WangQ GuoX ZhuT QinJ Development of phage resistance in multidrug-resistant Klebsiella pneumoniae is associated with reduced virulence: A case report of a personalised phage therapyClin Microbiol Infect202329121601.e11601.e710.1016/j.cmi.2023.08.022
    [Google Scholar]
  72. EskenaziA. LoodC. WubboltsJ. HitesM. BalarjishviliN. LeshkasheliL. AskilashviliL. KvachadzeL. van NoortV. WagemansJ. JayankuraM. ChanishviliN. de BoerM. NibberingP. KutateladzeM. LavigneR. MerabishviliM. PirnayJ.P. Combination of pre-adapted bacteriophage therapy and antibiotics for treatment of fracture-related infection due to pandrug-resistant Klebsiella pneumoniae.Nat. Commun.202213130210.1038/s41467‑021‑27656‑z35042848
    [Google Scholar]
  73. CanoE.J. CaflischK.M. BollykyP.L. Van BelleghemJ.D. PatelR. FacklerJ. BrownsteinM.J. HorneB.A. BiswasB. HenryM. MalagonF. LewallenD.G. SuhG.A. Phage therapy for limb-threatening prosthetic knee Klebsiella pneumoniae infection: Case report and in vitro characterization of anti-biofilm activity.Clin. Infect. Dis.2021731e144e15110.1093/cid/ciaa70532699879
    [Google Scholar]
  74. LetkiewiczS. Łusiak-SzelachowskaM. MiędzybrodzkiR. ŻaczekM. Weber-DąbrowskaB. GórskiA. Low immunogenicity of intravesical phage therapy for urogenitary tract infections.Antibiotics (Basel)202110662710.3390/antibiotics1006062734070276
    [Google Scholar]
  75. QinJ. WuN. BaoJ. ShiX. OuH. YeS. ZhaoW. WeiZ. CaiJ. LiL. GuoM. WengJ. LuH. TanD. ZhangJ. HuangQ. ZhuZ. ShiY. HuC. GuoX. ZhuT. Heterogeneous Klebsiella pneumoniae co-infections complicate personalized bacteriophage therapy.Front. Cell. Infect. Microbiol.20211060840210.3389/fcimb.2020.60840233569355
    [Google Scholar]
  76. RostkowskaO.M. MiędzybrodzkiR. Miszewska-SzyszkowskaD. GórskiA. DurlikM. Treatment of recurrent urinary tract infections in a 60-year-old kidney transplant recipient. The use of phage therapy.Transpl. Infect. Dis.2021231e1339110.1111/tid.1339132599666
    [Google Scholar]
  77. BaoJ. WuN. ZengY. ChenL. LiL. YangL. ZhangY. GuoM. LiL. LiJ. TanD. ChengM. GuJ. QinJ. LiuJ. LiS. PanG. JinX. YaoB. GuoX. ZhuT. LeS. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae.Emerg. Microbes Infect.20209177177410.1080/22221751.2020.174795032212918
    [Google Scholar]
  78. RubalskiiE. RuemkeS. SalmoukasC. BoyleE.C. WarneckeG. TudoracheI. ShresthaM. SchmittoJ.D. MartensA. RojasS.V. ZiesingS. BochkarevaS. KuehnC. HaverichA. Bacteriophage therapy for critical infections related to cardiothoracic surgery.Antibiotics (Basel)20209523210.3390/antibiotics905023232380707
    [Google Scholar]
  79. ChapelleC. GaboritB. DumontR. DinhA. ValléeM. Treatment of UTIs due to Klebsiella pneumoniae carbapenemase-producers: how to use new antibiotic drugs? A narrative review.Antibiotics (Basel)20211011133210.3390/antibiotics1011133234827272
    [Google Scholar]
  80. PrussA. KwiatkowskiP. SienkiewiczM. MasiukH. ŁapińskaA. KotB. KilczewskaZ. Giedrys-KalembaS. DołęgowskaB. Similarity analysis of Klebsiella pneumoniae producing carbapenemases isolated from UTI and other infections.Antibiotics (Basel)2023127122410.3390/antibiotics1207122437508320
    [Google Scholar]
  81. LeT. NangS.C. ZhaoJ. YuH.H. LiJ. GillJ.J. LiuM. AslamS. Therapeutic potential of intravenous phage as standalone therapy for recurrent drug-resistant urinary tract infections.Antimicrob. Agents Chemother.2023674e000372310.1128/aac.00037‑2336975787
    [Google Scholar]
  82. HesseS. RajaureM. WallE. JohnsonJ. BliskovskyV. GottesmanS. AdhyaS. Phage resistance in multidrug-resistant Klebsiella pneumoniae ST258 evolves via diverse mutations that culminate in impaired adsorption.MBio2020111e025301910.1128/mBio.02530‑1931992617
    [Google Scholar]
  83. TangM. HuangZ. ZhangX. KongJ. ZhouB. HanY. ZhangY. ChenL. ZhouT. Phage resistance formation and fitness costs of hypervirulent Klebsiella pneumoniae mediated by K2 capsule-specific phage and the corresponding mechanisms.Front. Microbiol.202314115629210.3389/fmicb.2023.115629237538841
    [Google Scholar]
  84. FangQ. FengY. McNallyA. ZongZ. Characterization of phage resistance and phages capable of intestinal decolonization of carbapenem-resistant Klebsiella pneumoniae in mice.Commun. Biol.2022514810.1038/s42003‑022‑03001‑y35027665
    [Google Scholar]
  85. GuJ. LiuX. LiY. HanW. LeiL. YangY. ZhaoH. GaoY. SongJ. LuR. SunC. FengX. A method for generation phage cocktail with great therapeutic potential.PLoS One201273e3169810.1371/journal.pone.003169822396736
    [Google Scholar]
  86. ChangD. SharmaL. Dela CruzC.S. ZhangD. Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection.Front. Microbiol.20211275066210.3389/fmicb.2021.75066234992583
    [Google Scholar]
  87. BretaudeauL. TremblaisK. AubritF. MeicheninM. ArnaudI. Good manufacturing practice (GMP) compliance for phage therapy medicinal products.Front. Microbiol.202011116110.3389/fmicb.2020.0116132582101
    [Google Scholar]
  88. MalikD.J. SokolovI.J. VinnerG.K. MancusoF. CinquerruiS. VladisavljevicG.T. ClokieM.R.J. GartonN.J. StapleyA.G.F. KirpichnikovaA. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy.Adv. Colloid Interface Sci.201724910013310.1016/j.cis.2017.05.01428688779
    [Google Scholar]
  89. DuyvejonckH. MerabishviliM. VaneechoutteM. de SoirS. WrightR. FrimanV.P. VerbekenG. De VosD. PirnayJ.P. Van MechelenE. VermeulenS.J.T. Evaluation of the stability of bacteriophages in different solutions suitable for the production of magistral preparations in Belgium.Viruses202113586510.3390/v1305086534066841
    [Google Scholar]
  90. KimY. LeeS.M. NongL.K. KimJ. KimS.B. KimD. Characterization of Klebsiella pneumoniae bacteriophages, KP1 and KP12, with deep learning-based structure prediction.Front. Microbiol.20231399091010.3389/fmicb.2022.99091036762092
    [Google Scholar]
  91. ManoharP. RameshN. Improved lyophilization conditions for long-term storage of bacteriophages.Sci. Rep.2019911524210.1038/s41598‑019‑51742‑431645642
    [Google Scholar]
  92. DurrH.A. LeipzigN.D. Advancements in bacteriophage therapies and delivery for bacterial infection.Mater. Adv.2023451249125710.1039/D2MA00980C36895585
    [Google Scholar]
  93. MahlerM. CostaA.R. van BeljouwS.P.B. FineranP.C. BrounsS.J.J. Approaches for bacteriophage genome engineering.Trends Biotechnol.202341566968510.1016/j.tibtech.2022.08.00836117025
    [Google Scholar]
  94. BriotT. KolendaC. FerryT. MedinaM. LaurentF. LeboucherG. PirotF. GroupP.S. Paving the way for phage therapy using novel drug delivery approaches.J. Control. Release202234741442410.1016/j.jconrel.2022.05.02135569589
    [Google Scholar]
  95. KuipersS. RuthM.M. MientjesM. de SévauxR.G.L. van IngenJ. A Dutch case report of successful treatment of chronic relapsing urinary tract infection with bacteriophages in a renal transplant patient.Antimicrob. Agents Chemother.2019641e012811910.1128/AAC.01281‑1931611357
    [Google Scholar]
  96. ŻaczekM. Weber-DąbrowskaB. MiędzybrodzkiR. Łusiak-SzelachowskaM. GórskiA. Phage therapy in Poland–A centennial journey to the first ethically approved treatment facility in Europe.Front. Microbiol.202011105610.3389/fmicb.2020.0105632582061
    [Google Scholar]
  97. NagelT. MusilaL. MuthoniM. NikolichM. NakavumaJ.L. ClokieM.R.J. Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world.Curr. Opin. Virol.20225310120810.1016/j.coviro.2022.10120835180534
    [Google Scholar]
  98. BoeckaertsD. StockM. Ferriol-GonzálezC. Oteo-IglesiasJ. SanjuánR. Domingo-CalapP. De BaetsB. BriersY. Prediction of Klebsiella phage-host specificity at the strain level.Nat. Commun.2024151435510.1038/s41467‑024‑48675‑638778023
    [Google Scholar]
  99. LiuG.Y. YuD. FanM.M. ZhangX. JinZ.Y. TangC. LiuX.F. Antimicrobial resistance crisis: Could artificial intelligence be the solution?Mil. Med. Res.2024111710.1186/s40779‑024‑00510‑138254241
    [Google Scholar]
  100. ZhuJ. WangT. ChenL. DuH. Virulence factors in hypervirulent Klebsiella pneumoniae.Front. Microbiol.20211264248410.3389/fmicb.2021.64248433897652
    [Google Scholar]
  101. Z VolozhantsevN. M ShpirtA. I BorzilovA. V KomisarovaE. M KrasilnikovaV. S ShashkovA. V VerevkinV. A KnirelY. V. Volozhantsev N Characterization and therapeutic potential of bacteriophage-encoded polysaccharide depolymerases with β galactosidase activity against Klebsiella pneumoniae K57 capsular type.Antibiotics (Basel)202091173210.3390/antibiotics911073233113762
    [Google Scholar]
  102. YeT.J. FungK.M. LeeI.M. KoT.P. LinC.Y. WongC.L. TuI.F. HuangT.Y. YangF.L. ChangY.P. WangJ.T. LinT.L. HuangK.F. WuS.H. Klebsiella pneumoniae K2 capsular polysaccharide degradation by a bacteriophage depolymerase does not require trimer formation.MBio2024153e035192310.1128/mbio.03519‑2338349137
    [Google Scholar]
  103. HuangT. ZhangZ. TaoX. ShiX. LinP. LiaoD. MaC. CaiX. LinW. JiangX. LuoP. WuS. XieY. Structural and functional basis of bacteriophage K64-ORF41 depolymerase for capsular polysaccharide degradation of Klebsiella pneumoniae K64.Int. J. Biol. Macromol.2024265Pt 213091710.1016/j.ijbiomac.2024.13091738513899
    [Google Scholar]
  104. LiP. MaW. ShenJ. ZhouX. Characterization of novel bacteriophage vb_kpnp_zx1 and its depolymerases with therapeutic potential for K57 Klebsiella pneumoniae infection.Pharmaceutics2022149191610.3390/pharmaceutics1409191636145665
    [Google Scholar]
  105. VolozhantsevN.V. BorzilovA.I. ShpirtA.M. KrasilnikovaV.M. VerevkinV.V. DenisenkoE.A. KombarovaT.I. ShashkovA.S. KnirelY.A. DyatlovI.A. Comparison of the therapeutic potential of bacteriophage KpV74 and phage-derived depolymerase (β-glucosidase) against Klebsiella pneumoniae capsular type K2.Virus Res.202232219895110.1016/j.virusres.2022.19895136191686
    [Google Scholar]
  106. LiP. ShenM. MaW. ZhouX. ShenJ. LysZX4-NCA, a new endolysin with broad-spectrum antibacterial activity for topical treatment.Virus Res.202434019929610.1016/j.virusres.2023.19929638065302
    [Google Scholar]
  107. RameshN. ManoharP. EniyanK. ArchanaL. AthiraS. LohB. MaL. LeptihnS. A lysozyme murein hydrolase with broad-spectrum antibacterial activity from Enterobacter phage myPSH1140.Antimicrob. Agents Chemother.2022669e005062210.1128/aac.00506‑2235950843
    [Google Scholar]
  108. GonçalvesT. MarquesA.T. ManageiroV. TanoeiroL. VitalJ.S. DuarteA. VítorJ.M.B. CaniçaM. GasparM.M. ValeF.F. Antimicrobial activity of prophage endolysins against critical Enterobacteriaceae antibiotic-resistant bacteria.Int. J. Pharm.202465112375810.1016/j.ijpharm.2023.12375838160991
    [Google Scholar]
  109. WanX. HendrixH. SkurnikM. LavigneR. Phage-based target discovery and its exploitation towards novel antibacterial molecules.Curr. Opin. Biotechnol.2021681710.1016/j.copbio.2020.08.01533007632
    [Google Scholar]
  110. LiuJ. DehbiM. MoeckG. ArhinF. BaudaP. BergeronD. CallejoM. FerrettiV. HaN. KwanT. McCartyJ. SrikumarR. WilliamsD. WuJ.J. GrosP. PelletierJ. DuBowM. Antimicrobial drug discovery through bacteriophage genomics.Nat. Biotechnol.200422218519110.1038/nbt93214716317
    [Google Scholar]
  111. SpruitC.M. WicklundA. WanX. SkurnikM. PajunenM.I. Discovery of three toxic proteins of Klebsiella phage fHe-Kpn01.Viruses202012554410.3390/v1205054432429141
    [Google Scholar]
  112. Molshanski-MorS. YosefI. KiroR. EdgarR. ManorM. GershovitsM. LasersonM. PupkoT. QimronU. Revealing bacterial targets of growth inhibitors encoded by bacteriophage T7.Proc. Natl. Acad. Sci. USA201411152187151872010.1073/pnas.141327111225512533
    [Google Scholar]
  113. WagemansJ. DelattreA.S. UytterhoevenB. De SmetJ. CenensW. AertsenA. CeyssensP.J. LavigneR. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein.Front. Microbiol.20156124210.3389/fmicb.2015.0124226594207
    [Google Scholar]
  114. MohanrajU. WanX. SpruitC.M. SkurnikM. PajunenM.I. A toxicity screening approach to identify bacteriophage-encoded anti-microbial proteins.Viruses20191111105710.3390/v1111105731739448
    [Google Scholar]
  115. Van den BosscheA. CeyssensP.J. De SmetJ. HendrixH. BellonH. LeimerN. WagemansJ. DelattreA.S. CenensW. AertsenA. LanduytB. MinakhinL. SeverinovK. NobenJ.P. LavigneR. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa.J. Proteome Res.201413104446445610.1021/pr500796n25185497
    [Google Scholar]
  116. KlimukE. AkulenkoN. MakarovaK.S. CeyssensP.J. VolchenkovI. LavigneR. SeverinovK. Host RNA polymerase inhibitors encoded by ϕKMV-like phages of pseudomonas.Virology20134361677410.1016/j.virol.2012.10.02123127595
    [Google Scholar]
  117. MattenbergerY. SilvaF. BelinD. 55.2, a phage T4 ORFan gene, encodes an inhibitor of Escherichia coli topoisomerase I and increases phage fitness.PLoS One2015104e012430910.1371/journal.pone.012430925875362
    [Google Scholar]
  118. SinghA. SinghA.N. RathorN. ChaudhryR. SinghS.K. NathG. Evaluation of bacteriophage cocktail on septicemia caused by colistin-resistant Klebsiella pneumoniae in mice model.Front. Pharmacol.20221377867610.3389/fphar.2022.77867635197852
    [Google Scholar]
  119. LiuJ.Y. LinT.L. ChiuC.Y. HsiehP.F. LinY.T. LaiL.Y. WangJ.T. Decolonization of carbapenem-resistant Klebsiella pneumoniae from the intestinal microbiota of model mice by phages targeting two surface structures.Front. Microbiol.20221387707410.3389/fmicb.2022.87707436071974
    [Google Scholar]
  120. GanL. FuH. TianZ. CuiJ. YanC. XueG. FanZ. DuB. FengJ. ZhaoH. FengY. XuZ. FuT. CuiX. ZhangR. DuS. LiuS. ZhouY. ZhangQ. CaoL. YuanJ. Bacteriophage effectively rescues pneumonia caused by prevalent multidrug-resistant Klebsiella pneumoniae in the early stage.Microbiol. Spectr.2022105e023582210.1128/spectrum.02358‑2236165773
    [Google Scholar]
  121. AsgharS. AhmedA. KhanS. LailA. ShakeelM. Genomic characterization of lytic bacteriophages A¥L and A¥M infecting ESBL K. pneumoniae and its therapeutic potential on biofilm dispersal and in-vivo bacterial clearance.Microbiol. Res.202226212710410.1016/j.micres.2022.12710435797946
    [Google Scholar]
  122. Vinod KumarC.S. SrinivasaH. Chirag ArunK. SuneetaK. Therapeutic effectiveness of bacteriophage in the treatment of pneumonia caused by NDM-4 producing Klebsiella pneumoniae in a mouse model.IJIRM202272788410.18231/j.ijirm.2022.019
    [Google Scholar]
  123. MichodigniN.F. NyachieoA. AkhwaleJ.K. MagomaG. Kimang’aA.N. Genomic evaluation of novel Kenyan virulent phage isolates infecting carbapenemase-producing Klebsiella pneumoniae and safety determination of their lysates in Balb/c mice.Arch. Microbiol.2022204853210.1007/s00203‑022‑03143‑x35904691
    [Google Scholar]
  124. ZaldastanishviliE. LeshkasheliL. DadianiM. NadareishviliL. AskilashviliL. KvatadzeN. GoderdzishviliM. KutateladzeM. BalarjishviliN. Phage therapy experience at the eliava phage therapy center: Three cases of bacterial persistence.Viruses20211310190110.3390/v1310190134696331
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128343976241117183624
Loading
/content/journals/cpd/10.2174/0113816128343976241117183624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test