Skip to content
2000
image of Eprosartan Reduces Inflammation and Oxidative Stress in Ethanol-induced Hepatotoxicity

Abstract

Introduction

Eprosartan is an effective blood pressure medication that blocks the Angiotensin Type 1 (AT1) receptor. The studies conducted on Eprosartan showed anti-oxidative stress effects and modulating inflammatory mechanisms. The current research is designed to clarify and examine the possible advantageous impacts of Eprosartan against chronic ethanol-induced hepatic damage.

Method

Twenty-four male Sprague-Dawley rats were haphazardly separated into four groups. The control group received normal saline 1 g/kg for 35 days (group 1). The EtOH group received 7 g/kg of 40% ethanol orally for 35 days (group 2). The EtOH+ EP group was pretreated with 60 mg/kg of Eprosartan dissolved in normal saline orally and, after 60 minutes, received 7 g/kg of 40% ethanol orally for 35 days (group 3). The EP group received only Eprosartan 60 mg/kg dissolved in normal saline for 35 days (group 4). The levels of biochemical parameters, oxidative stress markers, pro-inflammatory cytokines, and histopathological staining were evaluated in serum and liver tissue. The interactive behavior of Eprosartan with Tumor Necrosis Factor-α (TNF-α) protein was also explained by molecular docking.

Results

Pre-treatment with Eprosartan (60 mg/kg) notably diminished the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and Gamma-Glutamyl Transferase (GGT) enzymes, total triglyceride, cholesterol, total bilirubin, and inflammatory cytokines including TNF-α, Interleukin-1β (IL-1β) and Interleukin-6 (IL-6) levels, which were induced by alcohol administration (-value ≤ 0.05). In the Eprosartan pre-treated group, malondialdehyde and protein carbonyl content of liver tissue were remarkably diminished, as compared to the ethanol-induced rats. In addition, histopathological results approved the indicated finding. Molecular docking research gives insights into potential interactions of Eprosartan with TNF-α protein.

Conclusion

Our results revealed that the pre-treatment with Eprosartan (60 mg/kg) preserves against chronic alcohol-induced hepatic damage.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128342059250122060526
2025-02-12
2025-03-30
Loading full text...

Full text loading...

References

  1. Ohashi K. Pimienta M. Seki E. Alcoholic liver disease: A current molecular and clinical perspective. Liver Res. 2018 2 4 161 172 10.1016/j.livres.2018.11.002 31214376
    [Google Scholar]
  2. Hosseini N. Shor J. Szabo G. Alcoholic hepatitis: A review. Alcohol Alcohol. 2019 54 4 408 416 10.1093/alcalc/agz036 31219169
    [Google Scholar]
  3. Seitz H.K. Bataller R. Cortez-Pinto H. Gao B. Gual A. Lackner C. Mathurin P. Mueller S. Szabo G. Tsukamoto H. Alcoholic liver disease. Nat. Rev. Dis. Primers 2018 4 1 16 10.1038/s41572‑018‑0014‑7 30115921
    [Google Scholar]
  4. Ceni E. Mello T. Galli A. Pathogenesis of alcoholic liver disease: Role of oxidative metabolism. World J. Gastroenterol. 2014 20 47 17756 17772 10.3748/wjg.v20.i47.17756 25548474
    [Google Scholar]
  5. Hyun J. Han J. Lee C. Yoon M. Jung Y. Pathophysiological aspects of alcohol metabolism in the liver. Int. J. Mol. Sci. 2021 22 11 5717 10.3390/ijms22115717 34071962
    [Google Scholar]
  6. Leung T.M. Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J. Hepatol. 2013 58 2 395 398 10.1016/j.jhep.2012.08.018 22940046
    [Google Scholar]
  7. Linhart K. Bartsch H. Seitz H.K. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol. 2014 3 56 62 10.1016/j.redox.2014.08.009 25462066
    [Google Scholar]
  8. Albano E. Clot P. Morimoto M. Tomasi A. Ingelman-Sundberg M. French S.W. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology 1996 23 1 155 163 10.1002/hep.510230121 8550035
    [Google Scholar]
  9. Wang Y. Millonig G. Nair J. Patsenker E. Stickel F. Mueller S. Bartsch H. Seitz H.K. Ethanol‐induced cytochrome P4502E1 causes carcinogenic etheno‐DNA lesions in alcoholic liver disease. Hepatology 2009 50 2 453 461 10.1002/hep.22978 19489076
    [Google Scholar]
  10. Mueller S. Peccerella T. Qin H. Glassen K. Waldherr R. Flechtenmacher C. Straub B.K. Millonig G. Stickel F. Bruckner T. Bartsch H. Seitz H.K. Carcinogenic etheno DNA adducts in alcoholic liver disease: Correlation with cytochrome P‐4502E1 and fibrosis. Alcohol. Clin. Exp. Res. 2018 42 2 252 259 10.1111/acer.13546 29120493
    [Google Scholar]
  11. Deshpande N. Kandi S. Venkata Bharath Kumar P. V Ramana K. Muddeshwar M. Effect of alcohol consumption on oxidative stress markers and its role in the pathogenesis and progression of liver cirrhosis. Am. J. Med. Biol. Res. 2013 1 4 99 102 10.12691/ajmbr‑1‑4‑3
    [Google Scholar]
  12. Wang H.J. Gao B. Zakhari S. Nagy L.E. Inflammation in alcoholic liver disease. Annu. Rev. Nutr. 2012 32 1 343 368 10.1146/annurev‑nutr‑072610‑145138 22524187
    [Google Scholar]
  13. Iracheta-Vellve A. Petrasek J. Satishchandran A. Gyongyosi B. Saha B. Kodys K. Fitzgerald K.A. Kurt-Jones E.A. Szabo G. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J. Hepatol. 2015 63 5 1147 1155 10.1016/j.jhep.2015.06.013 26100496
    [Google Scholar]
  14. Gao B. Ahmad M.F. Nagy L.E. Tsukamoto H. Inflammatory pathways in alcoholic steatohepatitis. J. Hepatol. 2019 70 2 249 259 10.1016/j.jhep.2018.10.023 30658726
    [Google Scholar]
  15. Plosker G.L. Eprosartan. Drugs 2009 69 17 2477 2499 10.2165/11203980‑000000000‑00000 19911859
    [Google Scholar]
  16. Labiós M. Martínez M. Gabriel F. Guiral V. Dasi F. Beltrán B. Muñoz A. Superoxide dismutase and catalase anti-oxidant activity in leucocyte lysates from hypertensive patients: Effects of eprosartan treatment. J. Renin Angiotensin Aldosterone Syst. 2009 10 1 24 30 10.1177/1470320309104067 19286755
    [Google Scholar]
  17. Saad M.A.E. Fahmy M.I.M. Sayed R.H. El-Yamany M.F. El-Naggar R. Hegazy A.A.E. Al-Shorbagy M. Eprosartan: A closer insight into its neuroprotective activity in rats with focal cerebral ischemia–reperfusion injury. J. Biochem. Mol. Toxicol. 2021 35 7 e22796 10.1002/jbt.22796 33942446
    [Google Scholar]
  18. Al-Sultany H.H.A. Altimimi M.L. Hadi N.R. Protective effect of eprosartan in renal ischemia reperfusion injury by regulating oxidative stress, inflammation, and apoptotic cascades in a bilateral rat model. Wiad Lek. 2023 76 7 1576 1585 37622500
    [Google Scholar]
  19. Pal L.C. Agrawal S. Gautam A. Chauhan J.K. Rao C.V. Hepatoprotective and antioxidant potential of phenolics-enriched fraction of Anogeissus acuminata leaf against alcohol-induced hepatotoxicity in rats. Med. Sci. 2022 10 1 17 10.3390/medsci10010017 35323216
    [Google Scholar]
  20. Doustimotlagh A.H. Sadeghi H. Jahanbazi F. Sadeghi H. Omidifar N. Alipoor B. Kokhdan E.P. Mousavipoor S.M. Mousavi-Fard S.H. Metformin attenuates oxidative stress and liver damage after bile duct ligation in rats. Res. Pharm. Sci. 2019 14 2 122 129 10.4103/1735‑5362.253359 31620188
    [Google Scholar]
  21. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  22. Benzie I.F.F. Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996 239 1 70 76 10.1006/abio.1996.0292 8660627
    [Google Scholar]
  23. Golestani A. Doustimotlagh A.H. Dehpour A.R. Etemad-Moghadam S. Alaeddini M. Ostadhadi S. A study on OPG/RANK/RANKL axis in osteoporotic bile duct-ligated rats and the involvement of nitrergic and opioidergic systems. Res. Pharm. Sci. 2018 13 3 239 249 10.4103/1735‑5362.228954 29853933
    [Google Scholar]
  24. Aggarwal B.B. Gupta S.C. Kim J.H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 2012 119 3 651 665 10.1182/blood‑2011‑04‑325225 22053109
    [Google Scholar]
  25. He M.M. Smith A.S. Oslob J.D. Flanagan W.M. Braisted A.C. Whitty A. Cancilla M.T. Wang J. Lugovskoy A.A. Yoburn J.C. Fung A.D. Farrington G. Eldredge J.K. Day E.S. Cruz L.A. Cachero T.G. Miller S.K. Friedman J.E. Choong I.C. Cunningham B.C. Small-molecule inhibition of TNF-α. Science 2005 310 5750 1022 1025 10.1126/science.1116304 16284179
    [Google Scholar]
  26. Fassihi A. Mahnam K. Moeinifard B. Bahmanziari M. Aliabadi H.S. Zarghi A. Sabet R. Salimi M. Mansourian M. Synthesis, calcium-channel blocking activity, and conformational analysis of some novel 1,4-dihydropyridines: Application of PM3 and DFT computational methods. Med. Chem. Res. 2012 21 10 2749 2761 10.1007/s00044‑011‑9807‑x
    [Google Scholar]
  27. Mansourian M. Saghaie L. Fassihi A. Madadkar-Sobhani A. Mahnam K. Linear and nonlinear QSAR modeling of 1,3,8-substituted-9-deazaxanthines as potential selective A2BAR antagonists. Med. Chem. Res. 2013 22 10 4549 4567 10.1007/s00044‑012‑0453‑8
    [Google Scholar]
  28. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  29. Zia K. Ashraf S. Jabeen A. Saeed M. Nur-e-Alam M. Ahmed S. Al-Rehaily A.J. Ul-Haq Z. Identification of potential TNF-α inhibitors: From in silico to in vitro studies. Sci. Rep. 2020 10 1 20974 10.1038/s41598‑020‑77750‑3 33262408
    [Google Scholar]
  30. Hassanzadeh F. Nasab R.R. Mansourian M. Synthesis, antimicrobial evaluation and docking studies of some novel quinazolinone Schiff base derivatives. Res. Pharm. Sci. 2018 13 3 213 221 10.4103/1735‑5362.228942 29853931
    [Google Scholar]
  31. Morris G.M. Goodsell D.S. Halliday R.S. Huey R. Hart W.E. Belew R.K. Olson A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998 19 14 1639 1662 10.1002/(SICI)1096‑987X(19981115)19:14<1639::AID‑JCC10>3.0.CO;2‑B
    [Google Scholar]
  32. Mansourian M. Mahnam K. Madadkar-Sobhani A. Fassihi A. Saghaie L. Insights into the human A1 adenosine receptor from molecular dynamics simulation: Structural study in the presence of lipid membrane. Med. Chem. Res. 2015 24 10 3645 3659 10.1007/s00044‑015‑1409‑6
    [Google Scholar]
  33. Wallace A.C. Laskowski R.A. Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995 8 2 127 134 10.1093/protein/8.2.127 7630882
    [Google Scholar]
  34. Humphrey W. Dalke A. Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996 14 1 33 38, 27-28 10.1016/0263‑7855(96)00018‑5 8744570
    [Google Scholar]
  35. Koop D.R. Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J. 1992 6 2 724 730 10.1096/fasebj.6.2.1537462 1537462
    [Google Scholar]
  36. Yu H.S. Oyama T. Isse T. Kitagawa K. Pham T.T.P. Tanaka M. Kawamoto T. Formation of acetaldehyde-derived DNA adducts due to alcohol exposure. Chem. Biol. Interact. 2010 188 3 367 375 10.1016/j.cbi.2010.08.005 20813101
    [Google Scholar]
  37. Bourogaa E. Jarraya R.M. Nciri R. Damak M. Elfeki A. Protective effects of aqueous extract of Hammada scoparia against hepatotoxicity induced by ethanol in the rat. Toxicol. Ind. Health 2014 30 2 113 122 10.1177/0748233712452602 22778112
    [Google Scholar]
  38. Mani V. Arivalagan S. Siddique A.I. Namasivayam N. Antioxidant and anti-inflammatory role of zingerone in ethanol-induced hepatotoxicity. Mol. Cell. Biochem. 2016 421 1-2 169 181 10.1007/s11010‑016‑2798‑7 27544404
    [Google Scholar]
  39. Maimaitimin K. Jiang Z. Aierken A. Shayibuzhati M. Zhang X. Hepatoprotective effect of Alhagi sparsifolia against alcoholic Liver injury in mice. Braz. J. Pharm. Sci. 2018 54 3 54 10.1590/s2175‑97902018000317732
    [Google Scholar]
  40. Thabrew M. Joice P. Rajatissa W. A comparative study of the efficacy of Pavetta indica and Osbeckia octandra in the treatment of liver dysfunction. Planta Med. 1987 53 3 239 241 10.1055/s‑2006‑962691 3628555
    [Google Scholar]
  41. Wang Z. Yao T. Song Z. Chronic alcohol consumption disrupted cholesterol homeostasis in rats: Down-regulation of low-density lipoprotein receptor and enhancement of cholesterol biosynthesis pathway in the liver. Alcohol. Clin. Exp. Res. 2010 34 3 471 478 10.1111/j.1530‑0277.2009.01111.x 20028367
    [Google Scholar]
  42. Park H. Kim K. Relationship between alcohol consumption and serum lipid levels in elderly Korean men. Arch. Gerontol. Geriatr. 2012 55 2 226 230 10.1016/j.archger.2011.08.014 21925744
    [Google Scholar]
  43. Klop B. Rego A.T. Cabezas M.C. Alcohol and plasma triglycerides. Curr. Opin. Lipidol. 2013 24 4 321 326 10.1097/MOL.0b013e3283606845 23511381
    [Google Scholar]
  44. Levine B. Eprosartan provides safe and effective long-term maintenance of blood pressure control in patients with mild to moderate essential hypertension. Curr. Med. Res. Opin. 2001 17 1 8 17 10.1185/03007990152005405 11464450
    [Google Scholar]
  45. Guerra Ruiz A.R. Crespo J. López Martínez R.M. Iruzubieta P. Casals Mercadal G. Lalana Garcés M. Lavin B. Morales Ruiz M. Measurement and clinical usefulness of bilirubin in liver disease. Adv Lab Med 2021 2 3 352 361 10.1515/almed‑2021‑0047 37362415
    [Google Scholar]
  46. Tanaka M. Budhathoki S. Hirata A. Morita M. Kono S. Adachi M. Kawate H. Ohnaka K. Takayanagi R. Behavioral and clinical correlates of serum bilirubin concentrations in Japanese men and women. BMC Endocr. Disord. 2013 13 1 39 10.1186/1472‑6823‑13‑39 24090309
    [Google Scholar]
  47. Shaban N.Z. Zaki M.M. Koutb F. Abdul-Aziz A.A. Elshehawy A.A.H. Mehany H. Protective and therapeutic role of mango pulp and eprosartan drug and their anti-synergistic effects against thioacetamide-induced hepatotoxicity in male rats. Environ. Sci. Pollut. Res. Int. 2022 29 34 51427 51441 10.1007/s11356‑022‑19383‑9 35244847
    [Google Scholar]
  48. Kotoh K. Fukushima M. Horikawa Y. Yamashita S. Kohjima M. Nakamuta M. Enjoji M. Serum albumin is present at higher levels in alcoholic liver cirrhosis as compared to HCV-related cirrhosis. Exp. Ther. Med. 2012 3 1 72 75 10.3892/etm.2011.370 22969847
    [Google Scholar]
  49. Das S.K. Vasudevan D.M. Biochemical diagnosis of alcoholism. Indian J. Clin. Biochem. 2005 20 1 35 42 10.1007/BF02893039 23105491
    [Google Scholar]
  50. Rothschild M.A. Oratz M. Schreiber S.S. Alcohol, amino acids, and albumin synthesis. Gastroenterology 1974 67 6 1200 1213 10.1016/S0016‑5085(19)32706‑4 4430433
    [Google Scholar]
  51. Wu D. Cederbaum A. Oxidative stress and alcoholic liver disease. Semin. Liver Dis. 2009 29 2 141 154 10.1055/s‑0029‑1214370 19387914
    [Google Scholar]
  52. Azarmehr N. Afshar P. Moradi M. Sadeghi H. Sadeghi H. Alipoor B. Khalvati B. Barmoudeh Z. Abbaszadeh-Goudarzi K. Doustimotlagh A.H. Hepatoprotective and antioxidant activity of watercress extract on acetaminophen-induced hepatotoxicity in rats. Heliyon 2019 5 7 e02072 10.1016/j.heliyon.2019.e02072 31334381
    [Google Scholar]
  53. Ilaiyaraja N. Khanum F. Amelioration of alcohol-induced hepatotoxicity and oxidative stress in rats by Acorus calamus. J. Diet. Suppl. 2011 8 4 331 345 10.3109/19390211.2011.615805 22432772
    [Google Scholar]
  54. Morsy M.A. Heeba G.H. Mahmoud M.E. Ameliorative effect of eprosartan on high-fat diet/streptozotocin-induced early diabetic nephropathy in rats. Eur. J. Pharmacol. 2015 750 90 97 10.1016/j.ejphar.2015.01.027 25625658
    [Google Scholar]
  55. Halliwell B. Antioxidant defence mechanisms: From the beginning to the end (of the beginning). Free Radic. Res. 1999 31 4 261 272 10.1080/10715769900300841 10517532
    [Google Scholar]
  56. Nagi M.N. Almakki H.A. Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytother. Res. 2009 23 9 1295 1298 10.1002/ptr.2766 19277968
    [Google Scholar]
  57. Ince S. Kucukkurt I. Cigerci I.H. Fatih Fidan A. Eryavuz A. The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J. Trace Elem. Med. Biol. 2010 24 3 161 164 10.1016/j.jtemb.2010.01.003 20569927
    [Google Scholar]
  58. Jiang W. Gao M. Sun S. Bi A. Xin Y. Han X. Wang L. Yin Z. Luo L. Protective effect of l-theanine on carbon tetrachloride-induced acute liver injury in mice. Biochem. Biophys. Res. Commun. 2012 422 2 344 350 10.1016/j.bbrc.2012.05.022 22583898
    [Google Scholar]
  59. Lee C. Oh J.I. Park J. Choi J.H. Bae E.K. Lee H.J. Jung W.J. Lee D.S. Ahn K.S. Yoon S.S. TNF α mediated IL-6 secretion is regulated by JAK/STAT pathway but not by MEK phosphorylation and AKT phosphorylation in U266 multiple myeloma cells. BioMed Res. Int. 2013 2013 1 580135 24151609
    [Google Scholar]
  60. W Liu Lactate modulates iron metabolism by binding soluble adenylyl cyclase. Cell Metab. 2023 35 9 1597 1612
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128342059250122060526
Loading
/content/journals/cpd/10.2174/0113816128342059250122060526
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: liver ; oxidative stress ; inflammation ; rats ; Ethanol ; eprosartan
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test