Skip to content
2000
Volume 31, Issue 12
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Hepatotoxicity is a critical health hazard, primarily contributing to the increased incidence of deaths globally. The liver is one of the major and extremely vital organs of the human body. Autoimmune diseases, viruses, exposure to toxicants such as carcinogens, and changes in eating habits can all cause liver problems, among other things. Free radical generation, together with raised enzyme levels including SGOT, SGPT, and total bilirubin, are among the pathological changes set off by liver injury. Hepatotoxicity causes changes in cells, such as eosinophilic cytoplasm, nuclear pyknosis, fatty degeneration, too many liver lesions, and hepatic centrilobular necrosis due to lipid peroxidation. Researchers have used animal models to investigate liver diseases and toxicities. Drugs such as azathioprine, alcoholism, paracetamol intoxication, and anti-tuberculosis drugs are some of the most common causes of liver toxicity. These toxins cause calcium ions (Ca2+), reactive oxygen species (ROS), and inflammatory mediators to be released inside cells. This activates immune cells like NK cells, NKT cells, and Kupffer cells. These signaling pathways also play roles in hepatotoxicity. Due to its pathogenesis, no effective drug is currently available for hepatotoxicity due to a lack of understanding related to the signaling factors involved in it. The paper primarily examines different experimental models of hepatotoxicity, including non-invasive and invasive methods, as well as genetic models. As such, these models are crucial tools in advancing our understanding of hepatotoxicity, thus paving the way for new therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128338726241029175250
2024-12-17
2025-03-29
Loading full text...

Full text loading...

References

  1. BhakuniG.S. BediO. BariwalJ. DeshmukhR. KumarP. Animal models of hepatotoxicity.Inflamm. Res.2016651132410.1007/s00011‑015‑0883‑026427493
    [Google Scholar]
  2. OgunmoyoleT. AwodoojuM. IdowuS. DaramolaO. Phyllanthus amarus extract restored deranged biochemical parameters in rat model of hepatotoxicity and nephrotoxicity.Heliyon2020612e0567010.1016/j.heliyon.2020.e0567033364479
    [Google Scholar]
  3. DevarbhaviH. AsraniS.K. ArabJ.P. NarteyY.A. PoseE. KamathP.S. Global burden of liver disease: 2023 update.J. Hepatol.202379251653710.1016/j.jhep.2023.03.01736990226
    [Google Scholar]
  4. YounossiZ.M. WongG. AnsteeQ.M. HenryL. The global burden of liver disease.Clin. Gastroenterol. Hepatol.20232181978199110.1016/j.cgh.2023.04.01537121527
    [Google Scholar]
  5. CaoG. LiuJ. LiuM. Trends in mortality of liver disease due to hepatitis B in China from 1990 to 2019: Findings from the global burden of disease study.Chin. Med. J. (Engl.)2022135172049205510.1097/CM9.000000000000233136228164
    [Google Scholar]
  6. SonC. Awareness of the causes of drug-induced liver injury: A case of hepatotoxicity resulting from antipsychotics.J Int Korean Med202344475175610.22246/jikm.2023.44.4.751
    [Google Scholar]
  7. MüllerF.A. StamouM. EnglertF.H. FrenzelO. DiedrichS. Suter-DickL. WambaughJ.F. SturlaS.J. In vitro to in vivo extrapolation and high-content imaging for simultaneous characterization of chemically induced liver steatosis and markers of hepatotoxicity.Arch. Toxicol.20239761701172110.1007/s00204‑023‑03490‑837046073
    [Google Scholar]
  8. KyritsiK. WuN. ZhouT. CarpinoG. BaiocchiL. KennedyL. ChenL. CeciL. MeyerA.A. BarupalaN. FranchittoA. OnoriP. EkserB. GaudioE. WuC. MarakovitsC. ChakrabortyS. FrancisH. GlaserS. AlpiniG. Knockout of secretin ameliorates biliary and liver phenotypes during alcohol-induced hepatotoxicity.Cell Biosci.2023131510.1186/s13578‑022‑00945‑w36624475
    [Google Scholar]
  9. DuaT.K. AshrafG.J. PalaiS. BaishyaT. NandiG. SahuR. PaulP. The protective role of probiotics in the mitigation of carbon tetrachloride (CCl4) induced hepatotoxicity.Food Chem. Adv.2023210020510.1016/j.focha.2023.100205
    [Google Scholar]
  10. RenuK. ChakrabortyR. MyakalaH. KotiR. FamurewaA.C. MadhyasthaH. VellingiriB. GeorgeA. Valsala GopalakrishnanA. Molecular mechanism of heavy metals (Lead, Chromium, Arsenic, Mercury, Nickel and Cadmium) - induced hepatotoxicity - A review.Chemosphere202127112973510.1016/j.chemosphere.2021.12973533736223
    [Google Scholar]
  11. BhatiaD. YogeetaY. GoyalP. KabraA. Development on animal models for drug/chemical induced liver injury.Biomed. Pharmacol. J.202316113114310.13005/bpj/2595
    [Google Scholar]
  12. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: The MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.202940535029519
    [Google Scholar]
  13. GuvenD.C. ErulE. KaygusuzY. AkagunduzB. KilickapS. De LucaR. RizzoA. Immune checkpoint inhibitor-related hearing loss: A systematic review and analysis of individual patient data.Support. Care Cancer2023311162410.1007/s00520‑023‑08083‑w37819422
    [Google Scholar]
  14. RemashD. PrinceD.S. McKenzieC. StrasserS.I. KaoS. LiuK. Immune checkpoint inhibitor-related hepatotoxicity: A review.World J. Gastroenterol.202127325376539110.3748/wjg.v27.i32.537634539139
    [Google Scholar]
  15. DevarbhaviH. KaranthD. KsP. CkA. PatilM. Drug-induced liver injury with hypersensitivity features has a better outcome: A single-center experience of 39 children and adolescents.Hepatology20115441344135010.1002/hep.2452721735470
    [Google Scholar]
  16. JohraF.T. HossainS. JainP. BristyA.T. EmranT. AhmedR. SharkerS.M. BepariA.K. RezaH.M. Amelioration of CCl4-induced oxidative stress and hepatotoxicity by ganoderma lucidum in long evans rats.Sci. Rep.2023131990910.1038/s41598‑023‑35228‑y37336915
    [Google Scholar]
  17. ZhaoY. ZhaoM. WangZ. ZhaoC. ZhangY. WangM. Danggui Shaoyao San: Chemical characterization and inhibition of oxidative stress and inflammation to treat CCl4-induced hepatic fibrosis.J. Ethnopharmacol.2024318Pt A11687010.1016/j.jep.2023.11687037423517
    [Google Scholar]
  18. Abd-ElhakimY.M. GhoneimM.H. EbraheimL.L.M. ImamT.S. Taurine and hesperidin rescues carbon tetrachloride-triggered testicular and kidney damage in rats via modulating oxidative stress and inflammation.Life Sci.202025411778210.1016/j.lfs.2020.11778232407847
    [Google Scholar]
  19. JadhavVB ThakareVN SuralkarAA DeshpandeAD NaikSR Hepatoprotective activity of luffa acutangula against CCl4 and rifampicin induced liver toxicity in rats: A biochemical and histopathological evaluation.Indian J Exp Biol.488822829
    [Google Scholar]
  20. CohenS.M. BevanC. GollapudiB. KlaunigJ.E. Evaluation of the carcinogenicity of carbon tetrachloride.J. Toxicol. Environ. Health B Crit. Rev.202326634237010.1080/10937404.2023.222014737282619
    [Google Scholar]
  21. ManibusanM.K. OdinM. EastmondD.A. Postulated carbon tetrachloride mode of action: A review.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200725318520910.1080/1059050070156939817763046
    [Google Scholar]
  22. AkhtarT. SheikhN. An overview of thioacetamide-induced hepatotoxicity.Toxin Rev.2013323434610.3109/15569543.2013.805144
    [Google Scholar]
  23. Hamad ShareefS. Abdel Aziz IbrahimI. AlzahraniA.R. Al-MedhtiyM.H. Ameen AbdullaM. Hepatoprotective effects of methanolic extract of green tea against thioacetamide-induced liver injury in sprague dawley rats.Saudi J. Biol. Sci.202229156457310.1016/j.sjbs.2021.09.02335002452
    [Google Scholar]
  24. MoustafaA.H.A. AliE.M.M. MoselheyS.S. ToussonE. El-SaidK.S. Effect of coriander on thioacetamide-induced hepatotoxicity in rats.Toxicol. Ind. Health201430762162910.1177/074823371246247023042592
    [Google Scholar]
  25. ShareefS.H. JumaA.S.M. AghaD.N.F. AlzahraniA.R. IbrahimI.A.A. AbdullaM.A. Hepatoprotective effect of alpinetin on thioacetamide-induced liver fibrosis in sprague dawley rat.Appl. Sci. (Basel)2023139524310.3390/app13095243
    [Google Scholar]
  26. ShareefS.H. Al-MedhtiyM.H. Al RashdiA.S. AzizP.Y. AbdullaM.A. Hepatoprotective effect of pinostrobin against thioacetamide-induced liver cirrhosis in rats.Saudi J. Biol. Sci.202330110350610.1016/j.sjbs.2022.10350636458098
    [Google Scholar]
  27. EzhilarasanD. Molecular mechanisms in thioacetamide-induced acute and chronic liver injury models.Environ. Toxicol. Pharmacol.20239910409310.1016/j.etap.2023.10409336870405
    [Google Scholar]
  28. KangJ.S. WanibuchiH. MorimuraK. WongpoomchaiR. ChusiriY. GonzalezF.J. FukushimaS. Role of CYP2E1 in thioacetamide-induced mouse hepatotoxicity.Toxicol. Appl. Pharmacol.2008228329530010.1016/j.taap.2007.11.01018374380
    [Google Scholar]
  29. ShinM.R. LeeS.H. RohS.S. The potential hepatoprotective effect of paeoniae radix alba in thioacetamide-induced acute liver injury in rats.Evid. Based Complement. Alternat. Med.20222022790484510.1155/2022/790484535126604
    [Google Scholar]
  30. EldeebM. TahoonN. AbdalfattahA. Younis The effect of berberine on thioacetamide induced hepatic toxicity in rats.Bulletin Egyptian Soc Physiol Sci202343425526510.21608/besps.2023.222916.1147
    [Google Scholar]
  31. GuptaN.K. DixitV.K. Hepatoprotective activity of Cleome viscosa Linn. extract against thioacetamide-induced hepatotoxicity in rats.Nat. Prod. Res.200923141289129710.1080/1478641080244730219735042
    [Google Scholar]
  32. HajovskyH. HuG. KoenY. SarmaD. CuiW. MooreD.S. StaudingerJ.L. HanzlikR.P. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes.Chem. Res. Toxicol.20122591955196310.1021/tx300271922867114
    [Google Scholar]
  33. RahmanT.M. HodgsonH.J.F. The effects of early and late administration of inhibitors of inducible nitric oxide synthase in a thioacetamide-induced model of acute hepatic failure in the rat.J. Hepatol.200338558359010.1016/S0168‑8278(03)00050‑312713868
    [Google Scholar]
  34. ZimmermannT. FrankeH. DargelR. Biochemical and substructural studies on hepatic and serum lipoprotein metabolism after acute liver injury induced by thioacetamide in rats.Exp. Pathol.198528422523310.1016/S0232‑1513(85)80012‑83830742
    [Google Scholar]
  35. ChroudaA. ZinoubiK. SoltaneR. AlzahraniN. OsmanG. Al-GhamdiY.O. QariS. Al MahriA. AlgethamiF.K. MajdoubH. Jaffrezic RenaultN. An acetylcholinesterase inhibition-based biosensor for aflatoxin B1 detection using sodium alginate as an immobilization matrix.Toxins (Basel)202012317310.3390/toxins1203017332168976
    [Google Scholar]
  36. PuiuM. IstrateO. RotariuL. BalaC. Kinetic approach of aflatoxin B1–acetylcholinesterase interaction: A tool for developing surface plasmon resonance biosensors.Anal. Biochem.2012421258759410.1016/j.ab.2011.10.03522093609
    [Google Scholar]
  37. XuQ. ShiW. LvP. MengW. MaoG. GongC. ChenY. WeiY. HeX. ZhaoJ. HanH. SunM. XiaoK. Critical role of caveolin-1 in aflatoxin B1-induced hepatotoxicity via the regulation of oxidation and autophagy.Cell Death Dis.2020111610.1038/s41419‑019‑2197‑631919341
    [Google Scholar]
  38. Edite Bezerra da RochaM. FreireF.C.O. Erlan Feitosa MaiaF. Izabel Florindo GuedesM. RondinaD. Mycotoxins and their effects on human and animal health.Food Control201436115916510.1016/j.foodcont.2013.08.021
    [Google Scholar]
  39. de PeñaDG Exposure to aflatoxin B1 in experimental animals and its public health significance.Salud Publica Mex.2007493227235
    [Google Scholar]
  40. BbosaGS KityaD OddaJ Ogwal-OkengJ Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis.Health2013510A10.4236/health.2013.510A1003
    [Google Scholar]
  41. BansalS. BiswasG. AvadhaniN.G. Mitochondria-targeted heme oxygenase-1 induces oxidative stress and mitochondrial dysfunction in macrophages, kidney fibroblasts and in chronic alcohol hepatotoxicity.Redox Biol.2014227328310.1016/j.redox.2013.07.00424494190
    [Google Scholar]
  42. VipinAV RaoR KurreyNK KaAA VenkateswaranG Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity.Biomed. Pharmacother.20179141542410.1016/j.biopha.2017.04.10728475920
    [Google Scholar]
  43. LiuY. WangW. Aflatoxin B1 impairs mitochondrial functions, activates ROS generation, induces apoptosis and involves Nrf2 signal pathway in primary broiler hepatocytes.Anim. Sci. J.201687121490150010.1111/asj.1255026997555
    [Google Scholar]
  44. YuanS. WuB. YuZ. FangJ. LiangN. ZhouM. HuangC. PengX. The mitochondrial and endoplasmic reticulum pathways involved in the apoptosis of bursa of Fabricius cells in broilers exposed to dietary aflatoxin B1.Oncotarget2016740652956530610.18632/oncotarget.1132127542244
    [Google Scholar]
  45. Gross-SteinmeyerK. EatonD.L. Dietary modulation of the biotransformation and genotoxicity of aflatoxin B1.Toxicology20122992-3697910.1016/j.tox.2012.05.01622640941
    [Google Scholar]
  46. KobayashiA. SuzukiY. SugaiS. Specificity of transaminase activities in the prediction of drug-induced hepatotoxicity.J. Toxicol. Sci.202045951553710.2131/jts.45.51532879252
    [Google Scholar]
  47. MalayeriA. BadparvaR. MombeiniM.A. KhorsandiL. GoudarziM. Naringenin: A potential natural remedy against methotrexate-induced hepatotoxicity in rats.Drug Chem. Toxicol.202245249149810.1080/01480545.2020.171913231986916
    [Google Scholar]
  48. PanditA SachdevaT BafnaP. Drug-induced hepatotoxicity: A review.J. Appl. Pharm. Sci.201225223-4310.7324/JAPS.2012.2541
    [Google Scholar]
  49. LeeW.M. SeniorJ.R. Recognizing drug-induced liver injury: Current problems, possible solutions.Toxicol. Pathol.200533115516410.1080/0192623059052235615805067
    [Google Scholar]
  50. ChowdhuryA. NabilaJ. Adelusi TemitopeI. WangS. Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity.Pharmacol. Res.202016110510210.1016/j.phrs.2020.10510232738495
    [Google Scholar]
  51. RamachandranA. JaeschkeH. Oxidant stress and acetaminophen hepatotoxicity: Mechanism-based drug development.Antioxid. Redox Signal.202135971873310.1089/ars.2021.010234232786
    [Google Scholar]
  52. ChidiacA.S. BuckleyN.A. NoghrehchiF. CairnsR. Paracetamol (acetaminophen) overdose and hepatotoxicity: Mechanism, treatment, prevention measures, and estimates of burden of disease.Expert Opin. Drug Metab. Toxicol.202319529731710.1080/17425255.2023.222395937436926
    [Google Scholar]
  53. KotwalP. KhajuriaP. DhimanS. KourD. DhimanS.K. KumarA. NandiU. Molecular mechanism for the involvement of CYP2E1/NF-κB axis in bedaquiline-induced hepatotoxicity.Life Sci.202331512137510.1016/j.lfs.2023.12137536621541
    [Google Scholar]
  54. RandolphH. JosephS. Toxic hepatitis with jaundice occurring in a patient treated with isoniazid: Report of a case in a patient with hereditary hemorrhagic telangiectasia.J. Am. Med. Assoc.19531521384010.1001/jama.1953.63690010014007i13034525
    [Google Scholar]
  55. MerrittA.D. FetterB.F. Toxic hepatic necrosis (hepatitis) due to isoniazid: Report of a case with cirrhosis and death due to hemorrhage from esophageal varices.Ann. Intern. Med.195950380481010.7326/0003‑4819‑50‑3‑80413627721
    [Google Scholar]
  56. WangP. PradhanK. ZhongX. MaX. Isoniazid metabolism and hepatotoxicity.Acta Pharm. Sin. B20166538439210.1016/j.apsb.2016.07.01427709007
    [Google Scholar]
  57. StephensC. AndradeR.J. LucenaM.I. Mechanisms of drug-induced liver injury.Curr. Opin. Allergy Clin. Immunol.201414428629210.1097/ACI.000000000000007024915546
    [Google Scholar]
  58. LeiS. GuR. MaX. Clinical perspectives of isoniazid-induced liver injury.Liver Res.202152455210.1016/j.livres.2021.02.001
    [Google Scholar]
  59. EzhilarasanD. Antitubercular drugs induced liver injury: An updated insight into molecular mechanisms.Drug Metab. Rev.202355323925310.1080/03602532.2023.221547837218081
    [Google Scholar]
  60. MetushiI.G. NakagawaT. UetrechtJ. Direct oxidation and covalent binding of isoniazid to rodent liver and human hepatic microsomes: Humans are more like mice than rats.Chem. Res. Toxicol.201225112567257610.1021/tx300341r23016703
    [Google Scholar]
  61. LiF. LuJ. ChengJ. WangL. MatsubaraT. CsanakyI.L. KlaassenC.D. GonzalezF.J. MaX. Human PXR modulates hepatotoxicity associated with rifampicin and isoniazid co-therapy.Nat. Med.201319441842010.1038/nm.310423475203
    [Google Scholar]
  62. JyothiB.A. MohanalakshmiS. AnithaK. Protective effect of Mirabilis jalapa leaves on anti-tubercular drugs induced hepatotoxicity.Asian J. Pharm. Clin. Res.201363221224
    [Google Scholar]
  63. KohanskiM.A. DwyerD.J. WierzbowskiJ. CottarelG. CollinsJ.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death.Cell2008135467969010.1016/j.cell.2008.09.03819013277
    [Google Scholar]
  64. FotiJ.J. DevadossB. WinklerJ.A. CollinsJ.J. WalkerG.C. Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics.Science2012336607931531910.1126/science.121919222517853
    [Google Scholar]
  65. ShatalinK. ShatalinaE. MironovA. NudlerE. H2S: A universal defense against antibiotics in bacteria.Science2011334605898699010.1126/science.120985522096201
    [Google Scholar]
  66. WangX. ZhaoX. Contribution of oxidative damage to antimicrobial lethality.Antimicrob. Agents Chemother.20095341395140210.1128/AAC.01087‑0819223646
    [Google Scholar]
  67. KerenI. WuY. InocencioJ. MulcahyL.R. LewisK. Killing by bactericidal antibiotics does not depend on reactive oxygen species.Science201333961241213121610.1126/science.123268823471410
    [Google Scholar]
  68. BelenkyP. YeJ.D. PorterC.B.M. CohenN.R. LobritzM.A. FerranteT. JainS. KorryB.J. SchwarzE.G. WalkerG.C. CollinsJ.J. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage.Cell Rep.201513596898010.1016/j.celrep.2015.09.05926565910
    [Google Scholar]
  69. WangX. RyuD. HoutkooperR.H. AuwerxJ. Antibiotic use and abuse: A threat to mitochondria and chloroplasts with impact on research, health, and environment.BioEssays201537101045105310.1002/bies.20150007126347282
    [Google Scholar]
  70. LowesD.A. WallaceC. MurphyM.P. WebsterN.R. GalleyH.F. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells.Free Radic. Res.200943432332810.1080/1071576090273627519235604
    [Google Scholar]
  71. McKeeE.E. FergusonM. BentleyA.T. MarksT.A. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones.Antimicrob. Agents Chemother.20065062042204910.1128/AAC.01411‑0516723564
    [Google Scholar]
  72. BidellM.R. LodiseT.P. Fluoroquinolone-associated tendinopathy: Does levofloxacin pose the greatest risk?Pharmacotherapy201636667969310.1002/phar.176127138564
    [Google Scholar]
  73. FeinbergB.A. GajraA. ZettlerM.E. PhillipsT.D. PhillipsE.G.Jr KishJ.K. Use of real-world evidence to support FDA approval of oncology drugs.Value Health202023101358136510.1016/j.jval.2020.06.00633032780
    [Google Scholar]
  74. DerbyL.E. JickH. HenryD.A. DeanA.D. Erythromycin-associated cholestatic hepatitis.Med. J. Aust.1993158860060210.5694/j.1326‑5377.1993.tb137625.x8479375
    [Google Scholar]
  75. Abdel-HameidN.A.H. Protective role of dimethyl diphenyl bicarboxylate (DDB) against erythromycin induced hepatotoxicity in male rats.Toxicol. In Vitro200721461862510.1016/j.tiv.2006.12.00617267170
    [Google Scholar]
  76. De RuysscherD. NiedermannG. BurnetN.G. SivaS. LeeA.W.M. Hegi-JohnsonF. Radiotherapy toxicity.Nat. Rev. Dis. Primers2019511310.1038/s41572‑019‑0064‑530792503
    [Google Scholar]
  77. ZhouY.J. TangY. LiuS.J. ZengP.H. QuL. JingQ.C. YinW.J. Radiation-induced liver disease: Beyond DNA damage.Cell Cycle202322550652610.1080/15384101.2022.213116336214587
    [Google Scholar]
  78. ToescaD.A.S. IbragimovB. KoongA.J. XingL. KoongA.C. ChangD.T. Strategies for prediction and mitigation of radiation-induced liver toxicity.J. Radiat. Res. (Tokyo)201859Suppl. 1i40i4910.1093/jrr/rrx10429432550
    [Google Scholar]
  79. CitrinDE MitchellJB Mechanisms of normal tissue injury from irradiation.Semin Radiat Oncol.201727431632410.1016/j.semradonc.2017.04.001
    [Google Scholar]
  80. ShedidS.M. Abdel-MagiedN. SaadaH.N. Role of betaine in liver injury induced by the exposure to ionizing radiation.Environ. Toxicol.201934212313010.1002/tox.2266430311401
    [Google Scholar]
  81. KimH.G. JangS.S. LeeJ.S. KimH.S. SonC.G. Panax ginseng Meyer prevents radiation-induced liver injury via modulation of oxidative stress and apoptosis.J. Ginseng Res.201741215916810.1016/j.jgr.2016.02.00628413320
    [Google Scholar]
  82. TchounwouPB YedjouCG PatlollaAK SuttonDJ Heavy metal toxicity and the environment.Exp Suppl.201213316410.1007/978‑3‑7643‑8340‑4_6
    [Google Scholar]
  83. LiuJ.G. GoyerR.A. WaalkesM.P. Toxic effects of metals. Casarett and Doull’s toxicology: The basic science of poisons.7th edMcGraw-HillNew York2008931979
    [Google Scholar]
  84. DahlJ.U. GrayM.J. JakobU. Protein quality control under oxidative stress conditions.J. Mol. Biol.201542771549156310.1016/j.jmb.2015.02.01425698115
    [Google Scholar]
  85. KaurT. SinghA.P. GoelR.K. Mechanisms pertaining to arsenic toxicity.Toxicol. Int.2011182879310.4103/0971‑6580.8425821976811
    [Google Scholar]
  86. NajafiN. RezaeeR. HayesA.W. KarimiG. A review of mechanisms underlying the protective effects of natural compounds against arsenic-induced neurotoxicity.Biometals202336479981310.1007/s10534‑022‑00482‑636564665
    [Google Scholar]
  87. GhoshJ SilPC Mechanism for arsenic-induced toxic effects.Handbook of Arsenic ToxicologyAcademic Press202322325210.1016/B978‑0‑323‑89847‑8.00022‑5
    [Google Scholar]
  88. AposhianH.V. AposhianM.M. Arsenic toxicology: Five questions.Chem. Res. Toxicol.200619111510.1021/tx050106d16411650
    [Google Scholar]
  89. FloraS.J.S. Arsenic-induced oxidative stress and its reversibility.Free Radic. Biol. Med.201151225728110.1016/j.freeradbiomed.2011.04.00821554949
    [Google Scholar]
  90. AlmasmoumH. RefaatB. GhaithM.M. AlmaimaniR.A. IdrisS. AhmadJ. AbdelghanyA.H. BaSalamahM.A. El-BoshyM. Protective effect of Vitamin D3 against lead induced hepatotoxicity, oxidative stress, immunosuppressive and calcium homeostasis disorders in rat.Environ. Toxicol. Pharmacol.20197210324610.1016/j.etap.2019.10324631465891
    [Google Scholar]
  91. FloraS.J.S. TripathiN. Hepatic and renal metallothionein induction following single oral administration of gallium arsenide in rats.IUBMB Life19984561121112710.1080/152165498002033429762410
    [Google Scholar]
  92. MathewsV.V. PaulM.V. AbhilashM. ManjuA. AbhilashS. NairR.H. Myocardial toxicity of acute promyelocytic leukaemia drug-arsenic trioxide.Eur. Rev. Med. Pharmacol. Sci.201317Suppl. 1343823436664
    [Google Scholar]
  93. RaoA ChamolaA ApurvaS GhoshC. An analysis of arsenic toxicity's origins, manifestations, and remediationVantage J. Thematic Anal.2023427290
    [Google Scholar]
  94. Balali-MoodM. NaseriK. TahergorabiZ. KhazdairM.R. SadeghiM. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic.Front. Pharmacol.20211264397210.3389/fphar.2021.64397233927623
    [Google Scholar]
  95. CaiP. ZhuQ. CaoQ. BaiY. ZouH. GuJ. YuanY. LiuX. LiuZ. BianJ. Quercetin and allicin can alleviate the hepatotoxicity of lead (Pb) through the PI3K signaling pathway.J. Agric. Food Chem.202169329451946010.1021/acs.jafc.1c0379434372660
    [Google Scholar]
  96. JayamuraliD. VarierK.M. LiuW. RamanJ. Ben-DavidY. ShenX. GajendranB. An overview of heavy metal toxicity.Metal, Metal Oxides Metal Sulphides Biomedical Appl2021323342
    [Google Scholar]
  97. Hans WedepohlK. The composition of the continental crust.Geochim. Cosmochim. Acta19955971217123210.1016/0016‑7037(95)00038‑2
    [Google Scholar]
  98. JosephP. Mechanisms of cadmium carcinogenesis.Toxicol. Appl. Pharmacol.2009238327227910.1016/j.taap.2009.01.01119371617
    [Google Scholar]
  99. RenugadeviJ. PrabuS.M. Cadmium-induced hepatotoxicity in rats and the protective effect of naringenin.Exp. Toxicol. Pathol.201062217118110.1016/j.etp.2009.03.01019409769
    [Google Scholar]
  100. RikansL.E. YamanoT. Mechanisms of cadmium-mediated acute hepatotoxicity.J. Biochem. Mol. Toxicol.200014211011710.1002/(SICI)1099‑0461(2000)14:2<110::AID‑JBT7>3.0.CO;2‑J10630425
    [Google Scholar]
  101. WilburSB Toxicological profile for chromium. Agency for Toxic Substances and Disease Registry, Atlanta (GA) 2000.
  102. Boşgelmezİ.İ. An overview on the potential mechanisms of action of N-acetyl-L-cysteine in hexavalent chromium-induced toxicity.Toxicology 2021; pp. 397-408.
    [Google Scholar]
  103. LiX. Abdel-MoneimA.M.E. YangB. Signaling pathways and genes associated with hexavalent chromium-induced hepatotoxicity.Biol. Trace Elem. Res.202320141888190410.1007/s12011‑022‑03291‑735648283
    [Google Scholar]
  104. ZhaoY. ZhangH. HaoD. WangJ. ZhuR. LiuW. LiuC. Selenium regulates the mitogen-activated protein kinase pathway to protect broilers from hexavalent chromium-induced kidney dysfunction and apoptosis.Ecotoxicol. Environ. Saf.202223911362910.1016/j.ecoenv.2022.11362935576799
    [Google Scholar]
  105. BernhoftRA Mercury toxicity and treatment: A review of the literature.J Environ Public Health.2012201246050810.1155/2012/460508
    [Google Scholar]
  106. HazelhoffM.H. TorresA.M. Gender differences in mercury-induced hepatotoxicity: Potential mechanisms.Chemosphere201820233033810.1016/j.chemosphere.2018.03.10629574386
    [Google Scholar]
  107. ZalupsR.K. Molecular interactions with mercury in the kidney.Pharmacol. Rev.200052111314310699157
    [Google Scholar]
  108. BridgesC.C. ZalupsR.K. Mechanisms involved in the transport of mercuric ions in target tissues.Arch. Toxicol.2017911638110.1007/s00204‑016‑1803‑y27422290
    [Google Scholar]
  109. ZengL. ZhengJ.L. WangY.H. XuM.Y. ZhuA.Y. WuC.W. The role of Nrf2/Keap1 signaling in inorganic mercury induced oxidative stress in the liver of large yellow croaker Pseudosciaena crocea.Ecotoxicol. Environ. Saf.201613234535210.1016/j.ecoenv.2016.05.00227362492
    [Google Scholar]
  110. ZhangH. TanX. YangD. LuJ. LiuB. BaiyunR. ZhangZ. Dietary luteolin attenuates chronic liver injury induced by mercuric chloride via the Nrf2/NF-κB/P53 signaling pathway in rats.Oncotarget2017825409824099310.18632/oncotarget.1733428498799
    [Google Scholar]
  111. BaiyunR. LiS. LiuB. LuJ. LvY. XuJ. WuJ. LiJ. LvZ. ZhangZ. Luteolin-mediated PI3K/Akt/Nrf2 signaling pathway ameliorates inorganic mercury-induced cardiac injury.Ecotoxicol. Environ. Saf.201816165566110.1016/j.ecoenv.2018.06.04629933135
    [Google Scholar]
  112. PalP.B. PalS. DasJ. SilP.C. Modulation of mercury-induced mitochondria-dependent apoptosis by glycine in hepatocytes.Amino Acids20124251669168310.1007/s00726‑011‑0869‑321373768
    [Google Scholar]
  113. BuchananR. SinclairJ.M.A. Alcohol use disorder and the liver.Addiction202111651270127810.1111/add.1520432710592
    [Google Scholar]
  114. LieberC.S. DeCarliL. RubinE. Sequential production of fatty liver, hepatitis, and cirrhosis in sub-human primates fed ethanol with adequate diets.Proc. Natl. Acad. Sci. USA197572243744110.1073/pnas.72.2.4371054827
    [Google Scholar]
  115. SepanlouS.G. SafiriS. BisignanoC. IkutaK.S. MeratS. SaberifirooziM. PoustchiH. TsoiD. ColombaraD.V. AbdoliA. AdedoyinR.A. AfaridehM. AgrawalS. AhmadS. AhmadianE. AhmadpourE. AkinyemijuT. AkunnaC.J. AlipourV. Almasi-HashianiA. AlmulhimA.M. Al-RaddadiR.M. Alvis-GuzmanN. AnberN.H. AngusC. AnoushiravaniA. ArablooJ. ArayaE.M. AsmelashD. AtaeiniaB. AtaroZ. AtoutM.M.W. AusloosF. AwasthiA. BadawiA. BanachM. Bejarano RamirezD.F. BhagavathulaA.S. BhalaN. BhattacharyyaK. BiondiA. BollaS.R. BoloorA. BorzìA.M. ButtZ.A. CámeraL.L.A.A. Campos-NonatoI.R. CarvalhoF. ChuD-T. ChungS-C. CortesiP.A. CostaV.M. CowieB.C. DaryaniA. de CourtenB. DemozG.T. DesaiR. DharmaratneS.D. DjalaliniaS. DoH.T. DorostkarF. DrakeT.M. DubeyM. DuncanB.B. EffiongA. EftekhariA. ElsharkawyA. EtemadiA. FarahmandM. FarzadfarF. FernandesE. FilipI. FischerF. GebremedhinK.B.B. GetaB. GilaniS.A. GillP.S. GutirrezR.A. HaileM.T. Haj-MirzaianA. HamidS.S. HasankhaniM. HasanzadehA. HashemianM. HassenH.Y. HayS.I. HayatK. HeidariB. HenokA. HoangC.L. HostiucM. HostiucS. HsiehV.C. IgumborE.U. IlesanmiO.S. IrvaniS.S.N. Jafari BalalamiN. JamesS.L. JeemonP. JhaR.P. JonasJ.B. JozwiakJ.J. KabirA. KasaeianA. KassayeH.G. KefaleA.T. KhalilovR. KhanM.A. KhanE.A. KhaterA. KimY.J. KoyanagiA. La VecchiaC. LimL-L. LopezA.D. LorkowskiS. LotufoP.A. LozanoR. Magdy Abd El RazekM. MaiH.T. ManafiN. ManafiA. MansourniaM.A. MantovaniL.G. MazzagliaG. MehtaD. MendozaW. MenezesR.G. MengeshaM.M. MeretojaT.J. MestrovicT. MiazgowskiB. MillerT.R. MirrakhimovE.M. MithraP. MoazenB. MoghadaszadehM. Mohammadian-HafshejaniA. MohammedS. MokdadA.H. Montero-ZamoraP.A. MoradiG. NaimzadaM.D. NayakV. NegoiI. NguyenT.H. Ofori-AsensoR. OhI-H. OlagunjuT.O. PadubidriJ.R. PakshirK. PanaA. PathakM. PourshamsA. RabieeN. RadfarA. RafieiA. RamezanzadehK. RanaS.M.M. RawafS. RawafD.L. ReinerR.C.Jr RoeverL. RoomR. RoshandelG. SafariS. SamyA.M. SanabriaJ. SartoriusB. SchmidtM.I. SenthilkumaranS. ShaikhM.A. SharifM. SharifiA. ShigematsuM. SinghJ.A. SoheiliA. SuleriaH.A.R. TeklehaimanotB.F. TesfayB.E. VacanteM. Vahedian-AzimiA. ValdezP.R. VasankariT.J. VuG.T. WaheedY. WeldegwergsK.G. WerdeckerA. WestermanR. WondafrashD.Z. WondmienehA.B. YeshitilaY.G. YonemotoN. YuC. ZaidiZ. ZarghiA. Zelber-SagiS. ZewdieK.A. ZhangZ-J. ZhaoX-J. NaghaviM. MalekzadehR. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: A systematic analysis for the global burden of disease study 2017.Lancet Gastroenterol. Hepatol.20205324526610.1016/S2468‑1253(19)30349‑831981519
    [Google Scholar]
  116. SheronN. Alcohol and liver disease in Europe – Simple measures have the potential to prevent tens of thousands of premature deaths.J. Hepatol.201664495796710.1016/j.jhep.2015.11.00626592352
    [Google Scholar]
  117. LieberCS Alcohol-induced hepatotoxicity.HepatotoxicologyHepatotoxicologyCRC Press202048152310.1201/9780367812041‑11
    [Google Scholar]
  118. NamachivayamA. ValsalaGA. A review on molecular mechanism of alcoholic liver disease.Life Sci.202127411932810.1016/j.lfs.2021.11932833711388
    [Google Scholar]
  119. WuY. YaoY. TaoL. WangS. HuY. LiL. HuS. MengX. YangD.S. LiH. XuT. The role of acetaldehyde dehydrogenase 2 in the pathogenesis of liver diseases.Cell. Signal.202310211055010.1016/j.cellsig.2022.11055036464104
    [Google Scholar]
  120. ZhouR. LinJ. WuD. Sulforaphane induces Nrf2 and protects against CYP2E1-dependent binge alcohol-induced liver steatosis.Biochim. Biophys. Acta, Gen. Subj.20141840120921810.1016/j.bbagen.2013.09.01824060752
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128338726241029175250
Loading
/content/journals/cpd/10.2174/0113816128338726241029175250
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test