Skip to content
2000
image of Untargeted Metabolomics and Bioactivities Assessment of Xylaria ellisii, an 
Endophytic Fungus Isolated from the Leaf of the Plant Acorus calamus Linn.

Abstract

Introduction

Fungal endophytes have mutualistic associations with the plant's host, communicating through genetic and metabolic processes. As a result, they gain the ability to generate therapeutically effective metabolites and their derivatives.

Methods

The current study aims to assess antioxidant potential along with the identification of robust metabolites within the crude extract of a potent endophytic fungus isolated from leaf tissues of the Linn plant.Four endophytic fungi were obtained from leaf tissues of Linn., and identified morphologically and molecularly as distinct species. Each ethyl acetate extract of the isolated fungi exhibited a unique chemical profile in the HPTLC fingerprint at various wavelengths. The ethyl acetate (EA) extract from the fungal strain ACL-4 () demonstrated the strongest antioxidant activity among the four fungal endophytes examined, with an EC value of 292.64 ± 3.558 µg/mL. Remarkably, fungal endophyte ACL-4 extract exhibited superior antimicrobial activity at the less concentrations compared to ACL-ME extract of leaf crude.

Results

The extract of ACL-ME-treated HEK 293T cells exhibited significant toxicity, with an IC value of 1481.74 ± 23.772 µg/mL, compared to fungal strain ACL-4-treated HEK 293T cells, which had an IC value greater than 2000 µg/mL. Consequently, the crude extract of ACL-4 and ACL-ME along with the standard drug methotrexate exhibited cytotoxic activity against cancer cell line MDA-MB-231 with IC concentrations of 146.65 ± 0.394 µg/mL, 528.46 ± 10.912 µg/mL, and 134.11 ± 3.446 µg/mL, respectively. A total of 2,255 compounds were detected through LC-HRMS-based metabolomics in the crude metabolites of , with certain compounds identified in multiple instances. Among this repertoire, 62 robust bioactive compounds were identified through meticulous screening, guided by existing literature. Comparative HPTLC fingerprint analysis, along with antioxidant efficacy assays of ethyl acetate extracts of derived from leaves and twigs revealed the host-specific production of bioactive chemicals.

Conclusion

The top-scoring Keap1 inhibitors derived from , including Pregabalin (-6.083 Kcal/mol), Ferulic acid (-5.434 Kcal/mol), (R)-Piperidine-2-carboxylic acid (-5.31 Kcal/mol), Genipin (-5.197 Kcal/mol), and Brivaracetam (-5.17 Kcal/mol), respectively were considered as Keap 1 inhibitors, potentially mitigate oxidative stress.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128337697250106001808
2025-01-24
2025-04-15
Loading full text...

Full text loading...

References

  1. Kuldau G. Bacon C. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biol. Control 2008 46 1 57 71 10.1016/j.biocontrol.2008.01.023
    [Google Scholar]
  2. Pan F. Su T.J. Cai S.M. Wu W. Fungal endophyte-derived Fritillaria unibracteata var. wabuensis: diversity, antioxidant capacities in vitro and relations to phenolic, flavonoid or saponin compounds. Sci. Rep. 2017 7 1 42008 10.1038/srep42008 28165019
    [Google Scholar]
  3. Khalil A.M.A. Abdelaziz A.M. Khaleil M.M. Hashem A.H. Fungal endophytes from leaves of Avicennia marina growing in semi‐arid environment as a promising source for bioactive compounds. Lett. Appl. Microbiol. 2021 72 3 263 274 10.1111/lam.13414 33063859
    [Google Scholar]
  4. Singh A. Singh D.K. Kharwar R.N. White J.F. Gond S.K. Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: Insights, avenues, and challenges. Microorganisms 2021 9 1 197 10.3390/microorganisms9010197 33477910
    [Google Scholar]
  5. Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 1988 69 1 2 9 10.2307/1943154
    [Google Scholar]
  6. Gupta S. Chaturvedi P. Kulkarni M.G. Van Staden J. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 2020 39 107462 10.1016/j.biotechadv.2019.107462 31669137
    [Google Scholar]
  7. Toghueo R. M. K. Boyom F. F. Endophytic Penicillium species and their agricultural, biotechnological, and pharmaceutical applications. 3 Biotech. 2020 10 3 107 10.1007/s13205‑020‑2081‑1 32095421
    [Google Scholar]
  8. Yadav M. Yadav A. Yadav J.P. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pac. J. Trop. Med. 2014 7 S256 S261 10.1016/S1995‑7645(14)60242‑X 25312132
    [Google Scholar]
  9. Meena H. Hnamte S. Siddhardha B. Secondary metabolites from endophytic fungi: chemical diversity and application. In: Advances in Endophytic Fungal Research. Fungal Biology. Cham Springer 2019 145 169 10.1007/978‑3‑030‑03589‑1_7
    [Google Scholar]
  10. Schulz B. Boyle C. Draeger S. Römmert A.K. Krohn K. Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol. Res. 2002 106 9 996 1004 10.1017/S0953756202006342
    [Google Scholar]
  11. Kharwar R.N. Mishra A. Gond S.K. Stierle A. Stierle D. Anticancer compounds derived from fungal endophytes: their importance and future challenges. Nat. Prod. Rep. 2011 28 7 1208 1228 10.1039/c1np00008j 21455524
    [Google Scholar]
  12. Prabha S. Kumar J. Gas chromatographic and mass spectroscopic (GC-MS) analysis of rhizome of Acorus calamus linn. for identification of potent antimicrobial bio-active compounds. Journal of Scientific Research 2021 13 1 263 273 10.3329/jsr.v13i1.48452
    [Google Scholar]
  13. Sharma V. Sharma R. Gautam D. Kuca K. Nepovimova E. Martins N. Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J. Clin. Med. 2020 9 4 1176 10.3390/jcm9041176 32325895
    [Google Scholar]
  14. Alaspure R.N. Nagdeve S.R. Isolation of Active Constituent of Acorus calamus Rhizomes Extract and Evaluation of its Anti-cancer Activity. Res. J. Pharm. Technol. 2011 4 12 1825 1832
    [Google Scholar]
  15. Imam H. Riaz Z. Azhar M. Sofi G. Hussain A. Sweet flag (Acorus calamus Linn.): An incredible medicinal herb. International Journal of Green Pharmacy 2013 7 4 288 10.4103/0973‑8258.122053
    [Google Scholar]
  16. Mukherjee P.K. Kumar V. Mal M. Houghton P.J. Acorus calamus.: scientific validation of ayurvedic tradition from natural resources. Pharm. Biol. 2007 45 8 651 666 10.1080/13880200701538724
    [Google Scholar]
  17. Barik B.P. Tayung K. Jagadev P.N. Dutta S.K. Phylogenetic placement of an endophytic fungus Fusarium oxysporum isolated from Acorus calamus rhizomes with antimicrobial activity. Eur. J. Biol. Sci. 2010 2 8 16
    [Google Scholar]
  18. Mani P.G. Audipudi A.V. Penicillium citrinum AVGE1 an endophyte of Acorus calamus its role in biocontrol and PGP in chilli seedlings. Int. J. Curr. Microbiol. Appl. Sci. 2016 5 5 657 667 10.20546/ijcmas.2016.505.066
    [Google Scholar]
  19. Dettmer K. Aronov P.A. Hammock B.D. Mass spectrometry‐based metabolomics. Mass Spectrom. Rev. 2007 26 1 51 78 10.1002/mas.20108 16921475
    [Google Scholar]
  20. Kusari S. Spiteller M. Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Metabolomics. In-Tech 2012 241 266
    [Google Scholar]
  21. Tan W.N. Nagarajan K. Lim V. Azizi J. Khaw K.Y. Tong W.Y. Leong C.R. Chear N.J.Y. Metabolomics analysis and antioxidant potential of endophytic Diaporthe fraxini ED2 grown in different culture media. J. Fungi 2022 8 5 519 10.3390/jof8050519 35628774
    [Google Scholar]
  22. Stuart K.A. Welsh K. Walker M.C. Edrada-Ebel R. Metabolomic tools used in marine natural product drug discovery. Expert Opin. Drug Discov. 2020 15 4 499 522 10.1080/17460441.2020.1722636 32026730
    [Google Scholar]
  23. Gupta N. Singh G. Qayum A. Ovais Dar M. Singh S. Katoch M. Sangwan P.L. In vitro and in silico anticancer evaluation of secondary metabolites from an endophytic fungus Aspergillus fumigatus isolated from Monarda citriodora. ChemistrySelect 2024 9 13 e202400637 10.1002/slct.202400637
    [Google Scholar]
  24. Rauf A. Rashid U. Akram Z. Ghafoor M. Muhammad N. Al Masoud N. Alomar T.S. Naz S. Iriti M. In vitro and in silico antiproliferative potential of isolated flavonoids constitutes from Pistacia integerrima. Z. Naturforsch. C J. Biosci. 2024 79 7-8 187 193 10.1515/znc‑2023‑0153 38549290
    [Google Scholar]
  25. Ashoka G.B. Shivanna M.B. Metabolite profiling, in vitro and in silico assessment of antibacterial and anticancer activities of Alternaria alternata endophytic in Jatropha heynei. Arch. Microbiol. 2023 205 2 61 10.1007/s00203‑022‑03388‑6 36625985
    [Google Scholar]
  26. Hassan M.G. Elmezain W.A. Baraka D.M. AboElmaaty S.A. Elhassanein A. Ibrahim R.M. Hamed A.A. Anti-Cancer and anti-oxidant bioactive metabolites from Aspergillus fumigatus wa7s6 isolated from marine sources: In vitro and in silico studies. Microorganisms 2024 12 1 127 10.3390/microorganisms12010127 38257954
    [Google Scholar]
  27. El-Hawary S.S. Moawad A.S. Bahr H.S. Attia E.Z. El-Katatny M.H. Mustafa M. Al-Karmalawy A.A. Rateb M.E. Zhang J. Abdelmohsen U.R. Mohammed R. Promising Cytotoxic butenolides from the Soybean endophytic fungus Aspergillus terreus : a combined molecular docking and in-vitro studies. J. Appl. Microbiol. 2023 134 7 lxad129 10.1093/jambio/lxad129 37401132
    [Google Scholar]
  28. Vellur S. Pavadai P. Babkiewicz E. Ram Kumar Pandian S. Maszczyk P. Kunjiappan S. An in silico molecular modelling-based prediction of potential Keap1 inhibitors from Hemidesmus indicus (L.) R. Br. against oxidative-stress-induced diseases. Molecules 2023 28 11 4541 10.3390/molecules28114541 37299017
    [Google Scholar]
  29. El-Hawary S.S. Sayed A.M. Rateb M.E. Bakeer W. AbouZid S.F. Mohammed R. Secondary metabolites from fungal endophytes of Solanum nigrum. Nat. Prod. Res. 2017 31 21 2568 2571 10.1080/14786419.2017.1327859 28532171
    [Google Scholar]
  30. Larran S. Mónaco C. Alippi H.E. Endophytic fungi in leaves of Lycopersicon esculentum Mill. World J. Microbiol. Biotechnol. 2001 17 2 181 184 10.1023/A:1016670000288
    [Google Scholar]
  31. Raja M. Praveena G. William S.J. Isolation and identification of fungi from soil in Loyola college campus, Chennai, India. Int. J. Curr. Microbiol. Appl. Sci. 2017 6 2 1789 1795 10.20546/ijcmas.2017.602.200
    [Google Scholar]
  32. Verma V.C. Lobkovsky E. Gange A.C. Singh S.K. Prakash S. Piperine production by endophytic fungus Periconia sp. Isolated from Piper longum L. J. Antibiot. (Tokyo) 2011 64 6 427 431 10.1038/ja.2011.27 21505472
    [Google Scholar]
  33. Tayung K. Barik B.P. Jha D.K. Deka D.C. Identification and characterization of antimicrobial metabolite from an endophytic fungus, Fusarium solani isolated from bark of Himalayan yew. Mycosphere 2011 2 3 203 213
    [Google Scholar]
  34. Radji M. Sumiati A. Rachmayani R. Elya B. Isolation of fungal endophytes from Garcinia mangostana and their antibacterial activity. Afr. J. Biotechnol. 2011 10 1 103 107
    [Google Scholar]
  35. Ansari A. Siddiqui V.U. Rehman W.U. Akram M.K. Siddiqi W.A. Alosaimi A.M. Hussein M.A. Rafatullah M. Green synthesis of TiO2 nanoparticles using Acorus calamus leaf extract and evaluating its photocatalytic and in vitro antimicrobial activity. Catalysts 2022 12 2 181 10.3390/catal12020181
    [Google Scholar]
  36. Singleton V.L. Orthofer R. Lamuela-Raventós R.M. Chapter 14 - Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Methods in Enzymology Elsevier 1999 299 152 178 10.1016/S0076‑6879(99)99017‑1
    [Google Scholar]
  37. Verma A. Gupta P. Rai N. Tiwari R.K. Kumar A. Salvi P. Kamble S.C. Singh S.K. Gautam V. Assessment of biological activities of fungal endophytes derived bioactive compounds Isolated from Amoora rohituka. J. Fungi 2022 8 3 285 10.3390/jof8030285 35330287
    [Google Scholar]
  38. Salomé-Abarca L.F. van den Hondel C.A.M.J.J. Erol Ö. Klinkhamer P.G.L. Kim H.K. Choi Y.H. HPTLC-based chemical profiling: An approach to monitor plant metabolic expansion caused by fungal endophytes. Metabolites 2021 11 3 174 10.3390/metabo11030174 33802951
    [Google Scholar]
  39. Rai N. Keshri P.K. Gupta P. Verma A. Kamble S.C. Singh S.K. Gautam V. Bioprospecting of fungal endophytes from Oroxylum indicum (L.) Kurz with antioxidant and cytotoxic activity. PLoS One 2022 17 3 e0264673 10.1371/journal.pone.0264673 35298472
    [Google Scholar]
  40. Bauer A.W. Kirby W.M.M. Sherris J.C. Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966 45 4_ts 493 496 10.1093/ajcp/45.4_ts.493 5325707
    [Google Scholar]
  41. Clarance P. Luvankar B. Sales J. Khusro A. Agastian P. Tack J.C. Al Khulaifi M.M. AL-Shwaiman H.A. Elgorban A.M. Syed A. Kim H.J. Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J. Biol. Sci. 2020 27 2 706 712 10.1016/j.sjbs.2019.12.026 32210692
    [Google Scholar]
  42. Taritla S. Kumari M. Kamat S. Bhat S.G. Jayabaskaran C. Optimization of physicochemical parameters for production of cytotoxic secondary metabolites and apoptosis induction activities in the culture extract of a marine algal–derived endophytic fungus Aspergillus sp. Front. Pharmacol. 2021 12 542891 10.3389/fphar.2021.542891 33981211
    [Google Scholar]
  43. Singh R.K. Ranjan A. Srivastava A.K. Singh M. Shukla A.K. Atri N. Mishra A. Singh A.K. Singh S.K. Cytotoxic and apoptotic inducing activity of Amoora rohituka leaf extracts in human breast cancer cells. J. Ayurveda Integr. Med. 2020 11 4 383 390 10.1016/j.jaim.2018.12.005 30846274
    [Google Scholar]
  44. Singh V.K. Thakur D.C. Rajak N. Giri R. Garg N. Immunomodulatory potential of bioactive glycoside syringin: a network pharmacology and molecular modeling approach. J. Biomol. Struct. Dyn. 2023 ••• 1 14 37243678
    [Google Scholar]
  45. Puranik N.V. Srivastava P. Bhatt G. John Mary D.J.S. Limaye A.M. Sivaraman J. Determination and analysis of agonist and antagonist potential of naturally occurring flavonoids for estrogen receptor (ERα) by various parameters and molecular modelling approach. Sci. Rep. 2019 9 1 7450 10.1038/s41598‑019‑43768‑5 31092862
    [Google Scholar]
  46. Ashfaq F. Barkat M.A. Ahmad T. Hassan M.Z. Ahmad R. Barkat H. Idreesh Khan M. Saad Alhodieb F. Asiri Y.I. Siddiqui S. Phytocompound screening, antioxidant activity and molecular docking studies of pomegranate seed: a preventive approach for SARS-CoV-2 pathogenesis. Sci. Rep. 2023 13 1 17069 10.1038/s41598‑023‑43573‑1 37816760
    [Google Scholar]
  47. Banavath H.N. Sharma O.P. Kumar M.S. Baskaran R. Identification of novel tyrosine kinase inhibitors for drug resistant T315I mutant BCR-ABL: a virtual screening and molecular dynamics simulations study. Sci. Rep. 2014 4 1 6948 10.1038/srep06948 25382104
    [Google Scholar]
  48. Chinnasamy S. Selvaraj G. Selvaraj C. Kaushik A.C. Kaliamurthi S. Khan A. Singh S.K. Wei D.Q. Combining in silico and in vitro approaches to identification of potent inhibitor against phospholipase A2 (PLA2). Int. J. Biol. Macromol. 2020 144 53 66 10.1016/j.ijbiomac.2019.12.091 31838071
    [Google Scholar]
  49. Friesner R.A. Banks J.L. Murphy R.B. Halgren T.A. Klicic J.J. Mainz D.T. Repasky M.P. Knoll E.H. Shelley M. Perry J.K. Shaw D.E. Francis P. Shenkin P.S. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004 47 7 1739 1749 10.1021/jm0306430 15027865
    [Google Scholar]
  50. Friesner R.A. Murphy R.B. Repasky M.P. Frye L.L. Greenwood J.R. Halgren T.A. Sanschagrin P.C. Mainz D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006 49 21 6177 6196 10.1021/jm051256o 17034125
    [Google Scholar]
  51. Greenidge P.A. Kramer C. Mozziconacci J.C. Wolf R.M. MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. J. Chem. Inf. Model. 2013 53 1 201 209 10.1021/ci300425v 23268595
    [Google Scholar]
  52. Palanichamy C. Pavadai P. Panneerselvam T. Arunachalam S. Babkiewicz E. Ram Kumar Pandian S. Shanmugampillai Jeyarajaguru K. Nayak Ammunje D. Kannan S. Chandrasekaran J. Sundar K. Maszczyk P. Kunjiappan S. Aphrodisiac performance of bioactive compounds from mimosa pudica linn.: In silico molecular docking and dynamics simulation approach. Molecules 2022 27 12 3799 10.3390/molecules27123799 35744923
    [Google Scholar]
  53. Thavasi V. Leong L.P. Bettens R.P.A. Investigation of the influence of hydroxy groups on the radical scavenging ability of polyphenols. J. Phys. Chem. A 2006 110 14 4918 4923 10.1021/jp057315r 16599462
    [Google Scholar]
  54. Mustafa R.A. Hamid A.A. Mohamed S. Bakar F.A. Total phenolic compounds, flavonoids, and radical scavenging activity of 21 selected tropical plants. J. Food Sci. 2010 75 1 C28 C35 10.1111/j.1750‑3841.2009.01401.x 20492146
    [Google Scholar]
  55. Sánchez-Rangel J.C. Benavides J. Heredia J.B. Cisneros-Zevallos L. Jacobo-Velázquez D.A. The Folin–Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Anal. Methods 2013 5 21 5990 5999 10.1039/c3ay41125g
    [Google Scholar]
  56. Brglez Mojzer E. Knez Hrnčič M. Škerget M. Knez Ž. Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016 21 7 901 10.3390/molecules21070901 27409600
    [Google Scholar]
  57. Krishnamoorthy D. Swaminathan A. AlGarawi A.M. Nallasamy L. Murugavelu G.S. Selvaraj S.L. Exploring the therapeutic potential of Cynanchum tunicatum (Retz.) Alston-assessment of phytochemicals and biological activities. J. King Saud Univer. - Sci. 2024 36 7 103238 10.1016/j.jksus.2024.103238
    [Google Scholar]
  58. Romero Rocamora C. Ramasamy K. Meng Lim S. Majeed A.B.A. Agatonovic-Kustrin S. HPTLC based approach for bioassay-guided evaluation of antidiabetic and neuroprotective effects of eight essential oils of the Lamiaceae family plants. J. Pharm. Biomed. Anal. 2020 178 112909 10.1016/j.jpba.2019.112909 31618702
    [Google Scholar]
  59. Agatonovic-Kustrin S. Kustrin E. Gegechkori V. Morton D.W. Bioassay-guided identification of α-amylase inhibitors in herbal extracts. J. Chromatogr. A 2020 1620 460970 10.1016/j.chroma.2020.460970 32089291
    [Google Scholar]
  60. Charlton N.C. Mastyugin M. Török B. Török M. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity. Molecules 2023 28 3 1057 10.3390/molecules28031057 36770724
    [Google Scholar]
  61. Kahl R. Synthetic antioxidants: Biochemical actions and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens. Toxicology 1984 33 3-4 185 228 10.1016/0300‑483X(84)90038‑6 6393452
    [Google Scholar]
  62. Khansari N. Shakiba Y. Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 2009 3 1 73 80 10.2174/187221309787158371 19149749
    [Google Scholar]
  63. Sharifi-Rad M. Anil Kumar N.V. Zucca P. Varoni E.M. Dini L. Panzarini E. Rajkovic J. Tsouh Fokou P.V. Azzini E. Peluso I. Prakash Mishra A. Nigam M. El Rayess Y. Beyrouthy M.E. Polito L. Iriti M. Martins N. Martorell M. Docea A.O. Setzer W.N. Calina D. Cho W.C. Sharifi-Rad J. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front. Physiol. 2020 11 694 10.3389/fphys.2020.00694 32714204
    [Google Scholar]
  64. Kumari M. Taritla S. Sharma A. Jayabaskaran C. Antiproliferative and antioxidative bioactive compounds in extracts of marine-derived endophytic fungus Talaromyces purpureogenus. Front. Microbiol. 2018 9 1777 10.3389/fmicb.2018.01777 30123207
    [Google Scholar]
  65. Prajapati C. Kumar D. Ambastha V. Singh S.K. Fungal Endophytes as Potential Anticancer Candidate over Synthetic Drugs: Latest Development and Future Prospects. In: Endophytic Fungi: The Hidden Sustainable Jewels for the Pharmaceutical and Agricultural Industries. Cham Springer 2024 27 56 10.1007/978‑3‑031‑49112‑2_2
    [Google Scholar]
  66. Huang W.Y. Cai Y.Z. Xing J. Corke H. Sun M. A potential antioxidant resource: endophytic fungi from medicinal plants. Econ. Bot. 2007 61 1 14 30 10.1663/0013‑0001(2007)61[14:APAREF]2.0.CO;2
    [Google Scholar]
  67. Rani A. Saini K. Bast F. Mehariya S. Bhatia S. Lavecchia R. Zuorro A. Microorganisms: A potential source of bioactive molecules for antioxidant applications. Molecules 2021 26 4 1142 10.3390/molecules26041142 33672774
    [Google Scholar]
  68. Liu X. Dong M. Chen X. Jiang M. Lv X. Yan G. Antioxidant activity and phenolics of an endophytic Xylaria sp. from Ginkgo biloba. Food Chem. 2007 105 2 548 554 10.1016/j.foodchem.2007.04.008 22868127
    [Google Scholar]
  69. Pham-Huy L.A. He H. Pham-Huyc C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008 4 2 89 96 10.59566/IJBS.2008.4089 23675073
    [Google Scholar]
  70. Ranjan A. Singh R.K. Khare S. Tripathi R. Pandey R.K. Singh A.K. Gautam V. Tripathi J.S. Singh S.K. Characterization and evaluation of mycosterol secreted from endophytic strain of Gymnema sylvestre for inhibition of α-glucosidase activity. Sci. Rep. 2019 9 1 17302 10.1038/s41598‑019‑53227‑w 31754154
    [Google Scholar]
  71. Siddhuraju P. Mohan P.S. Becker K. Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem. 2002 79 1 61 67 10.1016/S0308‑8146(02)00179‑6
    [Google Scholar]
  72. Bahorun T. Neergheen V.S. Aruoma O.I. Phytochemical constituents of Cassia fistula. Afr. J. Biotechnol. 2005 4 13
    [Google Scholar]
  73. Das B.K. Swamy A.H.M.V. Koti B.C. Gadad P.C. Experimental evidence for use of Acorus calamus (asarone) for cancer chemoprevention. Heliyon 2019 5 5 e01585 10.1016/j.heliyon.2019.e01585 31193009
    [Google Scholar]
  74. Efferth T. Koch E. Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Curr. Drug Targets 2011 12 1 122 132 10.2174/138945011793591626 20735354
    [Google Scholar]
  75. Anand U. Jacobo-Herrera N. Altemimi A. Lakhssassi N. A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites 2019 9 11 258 10.3390/metabo9110258 31683833
    [Google Scholar]
  76. Kaspar J.W. Niture S.K. Jaiswal A.K. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 2009 47 9 1304 1309 10.1016/j.freeradbiomed.2009.07.035 19666107
    [Google Scholar]
  77. Qin S. Hou D.X. Multiple regulations of Keap1/Nrf2 system by dietary phytochemicals. Mol. Nutr. Food Res. 2016 60 8 1731 1755 10.1002/mnfr.201501017 27523917
    [Google Scholar]
  78. Zhang D.D. The Nrf2-Keap1-ARE signaling pathway: The regulation and dual function of Nrf2 in cancer. Antioxid. Redox Signal. 2010 13 11 1623 1626 10.1089/ars.2010.3301 20486759
    [Google Scholar]
  79. Mukherjee A.G. Gopalakrishnan A.V. The mechanistic insights of the antioxidant Keap1-Nrf2 pathway in oncogenesis: a deadly scenario. Med. Oncol. 2023 40 9 248 10.1007/s12032‑023‑02124‑4 37480500
    [Google Scholar]
  80. Shahcheraghi S.H. Salemi F. Peirovi N. Ayatollahi J. Alam W. Khan H. Saso L. Nrf2 regulation by curcumin: molecular aspects for therapeutic prospects. Molecules 2021 27 1 167 10.3390/molecules27010167 35011412
    [Google Scholar]
  81. Liu C. Rokavec M. Huang Z. Hermeking H. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ. 2023 30 7 1771 1785 10.1038/s41418‑023‑01178‑1 37210578
    [Google Scholar]
  82. Suprihatin T. Widyarti S. Rifa’i M. Rahayu S. Computational study of curcumin as antioxidant and potential inhibitor to abrogate Keap1-Nrf2 interaction Med. Plant.-Int. J. Phytomedic. Relat. Ind. 2017 9 3 150 153
    [Google Scholar]
  83. Ren L. Zhan P. Wang Q. Wang C. Liu Y. Yu Z. Zhang S. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem. Biophys. Res. Commun. 2019 514 3 691 698 10.1016/j.bbrc.2019.05.010 31078267
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128337697250106001808
Loading
/content/journals/cpd/10.2174/0113816128337697250106001808
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: LCHRMS ; Acorus calamus Linn. ; Metabolomic ; Antioxidants ; Xylaria ellisii
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test