Skip to content
2000
image of Exploring Latest Expansions in Solid Lipid-based Nanoparticle Technology for Treatment of Cancer

Abstract

The field of cancer therapy has witnessed significant strides with the emergence of innovative drug delivery systems and one such promising avenue is solid lipid-based nanoparticle (SLN) technology. This abstract provides a complete overview of current advances in developing SLNs for effective cancer treatment solid lipid nanoparticles (NPs) represent a novel drug delivery platform characterized by their unique composition which includes biocompatible lipids as the main carrier material. This technology addresses challenges related to standard chemotherapy such as low bioavailability limited medicine stability and non-specific targeting. The incorporation of lipids in SLNs ensures enhanced drug encapsulation, protection of therapeutic agents from degradation-controlled release profiles. Recent breakthroughs in SLN technology have focused on optimizing formulation parameters to achieve superior drug loading capacities stability and sustained release kinetics. Advanced fabrication techniques including high-pressure homogenization and microemulsion methods have been pivotal in tailoring SLN properties for specific cancer types and therapeutic agents. Furthermore, SLNs' capacity to passively build up in tumor tissues using increased penetration and retention effects has been harnessed for targeted drug transport. Surface modifications using ligands or antibodies to facilitate active targeting, enhancing medication delivery's selectivity to tumor cells decreasing unwanted effects on normal tissues. This abstract highlights recent preclinical and clinical studies demonstrating the efficacy of SLN-based formulations in enhancing the therapeutic outcomes of various anticancer agents. The versatile nature of SLN technology makes it a viable option for the advancement of personalized and precision cancer therapies, marking a significant stride toward overcoming the limitations of conventional cancer treatments. As research in this domain progresses, the integration of SLNs holds immense potential for revolutionizing tumor treatment strategies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128334022241211033220
2025-02-04
2025-03-30
Loading full text...

Full text loading...

References

  1. Aguilera-garrido A. Antonio J. Grav P. Lipid-core nanoparticles: Classification, preparation methods , routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci. 2023 314 102871 10.1016/j.cis.2023.102871 36958181
    [Google Scholar]
  2. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  3. Thakur A. Nagori K. Rao A. Rai N. “Use of deep learning approaches for the prediction of diseases from medical images,” in Medical Imaging Informatics: Machine learning, deep learning and big data analytics 2024 115 138 https://www.scopus.com/inward/record.uri?eid=2-s2.0-85186819473&partnerID=40&md5=a555f234af1e4d42bd2db9cf77162863
  4. Tran P. Lee S.E. Kim D.H. Pyo Y.C. Park J.S. Recent advances of nanotechnology for the delivery of anticancer drugs for breast cancer treatment. J. Pharm. Investig. 2020 50 3 261 270 10.1007/s40005‑019‑00459‑7
    [Google Scholar]
  5. Nagori K. Nakhate K.T. Yadav K. Ajazuddin Pradhan M. Unlocking the Therapeutic Potential of Medicinal Plants for Alzheimer’s Disease: Preclinical to Clinical Trial Insights. Future Pharmacol. 2023 3 4 877 907 10.3390/futurepharmacol3040053
    [Google Scholar]
  6. Sakure K. Patel A. Pradhan M. Badwaik H.R. Recent Trends and Future Prospects of Phytosomes: A Concise Review. Indian J. Pharm. Sci. 2024 86 3 10.36468/pharmaceutical‑sciences.1334
    [Google Scholar]
  7. Baghel M. Baghel I. Kumari P. Bharkatiya M. Joshi G. Sakure K. Badwaik H. Nano-delivery Systems and Therapeutic Applications of Phytodrug Mangiferin. Appl. Biochem. Biotechnol. 2024 2024 10.1007/s12010‑024‑04906‑6 38526662
    [Google Scholar]
  8. Xu X. Li R. Dong R. Yang Y. Wang H. Cheng J. Liu Y. Ye J. In vitro characterization and cellular uptake profiles of TAMs-targeted lipid calcium carbonate nanoparticles for cancer immunotherapy. Acta Materia Med. 2022 1 3 400 410 10.15212/AMM‑2022‑0030
    [Google Scholar]
  9. Li J. Gu A. Nong X.M. Zhai S. Yue Z.Y. Li M.Y. Liu Y. Six‐Membered Aromatic Nitrogen Heterocyclic Anti‐Tumor Agents: Synthesis and Applications. Chem. Rec. 2023 23 12 e202300293 10.1002/tcr.202300293 38010365
    [Google Scholar]
  10. Kumar V. Garg V. Dureja H. Nanomedicine-based approaches for delivery of herbal compounds. Traditional Medicine Research 2022 7 5 48 10.53388/TMR20220223001
    [Google Scholar]
  11. Yadav N. Khatak S. Sara U.S. Solid lipid nanoparticles-a review. Int. J. Appl. Pharm 2013 5 2 8 18
    [Google Scholar]
  12. Akanda M. Mithu M.D.S.H. Douroumis D. Solid lipid nanoparticles: An effective lipid-based technology for cancer treatment. J. Drug Deliv. Sci. Technol. 2023 86 July 104709 10.1016/j.jddst.2023.104709
    [Google Scholar]
  13. Lim S.B. Banerjee A. Önyüksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J. Control. Release 2012 163 1 34 45 10.1016/j.jconrel.2012.06.002 22698939
    [Google Scholar]
  14. Sousa M. Silva A.C. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies 2021 10.1016/j.apsb.2021.02.012
    [Google Scholar]
  15. Almawash S. Solid lipid nanoparticles, an effective carrier for classical antifungal drugs. Saudi Pharm. J. 2023 31 7 1167 1180 10.1016/j.jsps.2023.05.011 37273269
    [Google Scholar]
  16. Ahirwar B. Ahirwar D. Jain R. Agrawal B. Sahu P. Sakure K. Badwaik H. Biofabricated Green Synthesized Hibiscus Silver Nanoparticles Potentiate Antibacterial Activity and Cytotoxicity in Human Lung Cancer Cells. Appl. Biochem. Biotechnol. 2024 2024 10.1007/s12010‑024‑04901‑x 38483765
    [Google Scholar]
  17. Badwaik H.R. Polysaccharide-Based Nanocarriers for Drug Delivery into and through the Skin. Polysaccharide based Nano-Biocarrier in Drug Delivery. CRC Press 2018 227 249 10.1201/9780429449437‑12
    [Google Scholar]
  18. Rigon R.B. Oyafuso M.H. Fujimura A.T. Gonçalez M.L. Prado A.H. Gremião M.P.D. Chorilli M. Nanotechnology-based drug delivery systems for melanoma antitumoral therapy: A review. BioMed Res. Int. 2015 2015 1 22 10.1155/2015/841817 26078967
    [Google Scholar]
  19. Sheoran S. Arora S. Samsonraj R. Govindaiah P. vuree S. Lipid-based nanoparticles for treatment of cancer. Heliyon 2022 8 5 e09403 10.1016/j.heliyon.2022.e09403 35663739
    [Google Scholar]
  20. Chen B. Apatinib and gamabufotalin co-loaded lipid/prussian blue nanoparticles for synergistic therapy to gastric cancer with metastasis. J. Pharm. Anal. 2023 2023 10.1016/j.jpha.2023.11.011 38779391
    [Google Scholar]
  21. Garud A. Singh D. Garud N. Solid Lipid Nanoparticles (SLN): Method, Characterization and Applications. Int. Curr. Pharm. J. 2012 1 11 384 393 10.3329/icpj.v1i11.12065
    [Google Scholar]
  22. Sharma A. Sharma U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm. 1997 154 2 123 140 10.1016/S0378‑5173(97)00135‑X
    [Google Scholar]
  23. Bukhari S.I. Imam S.S. Ahmad M.Z. Vuddanda P.R. Alshehri S. Mahdi W.A. Ahmad J. Recent progress in lipid nanoparticles for cancer theranostics: Opportunity and challenges. Pharmaceutics 2021 13 6 840 10.3390/pharmaceutics13060840 34200251
    [Google Scholar]
  24. Bayón-Cordero L. Alkorta I. Arana L. Application of solid lipid nanoparticles to improve the efficiency of anticancer drugs. Nanomaterials (Basel) 2019 9 3 474 10.3390/nano9030474 30909401
    [Google Scholar]
  25. Noll R. Industrial applications. 2nd ed Laser-Induced Break. Spectrosc 2020 Vol. 47 421 439 10.1016/B978‑0‑12‑818829‑3.00019‑8
    [Google Scholar]
  26. Geszke-Moritz M. Moritz M. Solid lipid nanoparticles as attractive drug vehicles: Composition, properties and therapeutic strategies. Mater. Sci. Eng. C 2016 68 982 994 10.1016/j.msec.2016.05.119 27524099
    [Google Scholar]
  27. Mishra V. Bansal K.K. Verma A. Yadav N. Thakur S. Sudhakar K. Rosenholm J.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018 10 4 191 10.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  28. Dahlman P. “High pressure Jet Assistance in steel turning,” Doktorsavhandlingar vid Chalmers Tek. Hogsk. 2005 50 2314 1 63
    [Google Scholar]
  29. Trotta M. Debernardi F. Caputo O. Preparation of solid lipid nanoparticles by a solvent emulsification–diffusion technique. Int. J. Pharm. 2003 257 1-2 153 160 10.1016/S0378‑5173(03)00135‑2 12711170
    [Google Scholar]
  30. Trucillo P. Campardelli R. Production of solid lipid nanoparticles with a supercritical fluid assisted process. J. Supercrit. Fluids 2019 143 16 23 10.1016/j.supflu.2018.08.001
    [Google Scholar]
  31. Shanaghi E. Aghajani M. Esmaeli F. Faramarzi M.A. Jahandar H. Amani A. Application of electrospray in preparing solid lipid nanoparticles and optimization of nanoparticles using artificial neural networks. Avicenna J. Med. Biotechnol. 2020 12 4 251 254 33014318
    [Google Scholar]
  32. Reddy S.H. Umashankar M.S. Damodharan N. Formulation, characterization and applications on solid lipid nanoparticles – A review. Research Journal of Pharmacy and Technology 2018 11 12 5691 5700 10.5958/0974‑360X.2018.01031.4
    [Google Scholar]
  33. Almeida A. Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 2007 59 6 478 490 10.1016/j.addr.2007.04.007 17543416
    [Google Scholar]
  34. Paliwal R. Paliwal S.R. Kenwat R. Kurmi B.D. Sahu M.K. Solid lipid nanoparticles: a review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020 30 3 179 194 10.1080/13543776.2020.1720649 32003260
    [Google Scholar]
  35. Venkateswarlu V. Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release 2004 95 3 627 638 10.1016/j.jconrel.2004.01.005 15023472
    [Google Scholar]
  36. Sastri K.T. Radha G.V. Pidikiti S. Vajjhala P. Solid lipid nanoparticles: Preparation techniques, their characterization, and an update on recent studies 2020 10.7324/JAPS.2020.10617
    [Google Scholar]
  37. Chandrakar S. Nagori K. Sharma M. Gupta S. Solanki H. Dewangan K. Sharma G. Sahu V.D. Majumdar M. Tripathi D.K. Alexander A. Ajazuddin Formulation and Evaluation of Floating tablet of Metronidazole for eradication of Helicobacter pylori. Research Journal of Pharmacy and Technology 2016 9 7 870 874 10.5958/0974‑360X.2016.00165.7
    [Google Scholar]
  38. Schubert M.A. Mu C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters 2003 10.1016/S0939‑6411(02)00130‑3
    [Google Scholar]
  39. Jenning V. Thu A.F. Gohla S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. 2000 Vol. 199 167 177
    [Google Scholar]
  40. Poovi G. Damodharan N. Lipid nanoparticles: A challenging approach for oral delivery of BCS Class-II drugs. Future J. Pharm. Sci. 2018 4 2 191 205 10.1016/j.fjps.2018.04.001
    [Google Scholar]
  41. Kammari R. Das N.G. Das S.K. Nanoparticulate Systems for Therapeutic and Diagnostic Applications. Elsevier 2017 10.1016/B978‑0‑323‑42978‑8.00006‑1
    [Google Scholar]
  42. Pandey S. Shaikh F. Gupta A. Tripathi P. Yadav J.S. A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery. Adv. Pharm. Bull. 2021 12 1 17 33 10.34172/apb.2022.007 35517874
    [Google Scholar]
  43. Kumar S. Randhawa J.K. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C 2013 33 4 1842 1852 10.1016/j.msec.2013.01.037 23498204
    [Google Scholar]
  44. Moon J.H. Moxley J.W. Jr Zhang P. Cui H. Nanoparticle approaches to combating drug resistance. Future Med. Chem. 2015 7 12 1503 1510 10.4155/fmc.15.82 26334205
    [Google Scholar]
  45. Din F. Aman W. Ullah I. Qureshi O.S. Mustapha O. Shafique S. Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine 2017 12 7291 7309 10.2147/IJN.S146315 29042776
    [Google Scholar]
  46. Sun T. Zhang Y.S. Pang B. Hyun D.C. Yang M. Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 2014 53 46 12320 12364 10.1002/anie.201403036 25294565
    [Google Scholar]
  47. Bertrand N. Wu J. Xu X. Kamaly N. Farokhzad O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014 66 2 25 10.1016/j.addr.2013.11.009 24270007
    [Google Scholar]
  48. Natfji A.A. Ravishankar D. Osborn H.M.I. Greco F. Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection. J. Pharm. Sci. 2017 106 11 3179 3187 10.1016/j.xphs.2017.06.019 28669714
    [Google Scholar]
  49. Jain A. Kesharwani P. Garg N.K. Jain A. Jain S.A. Jain A.K. Nirbhavane P. Ghanghoria R. Tyagi R.K. Katare O.P. Galactose engineered solid lipid nanoparticles for targeted delivery of doxorubicin. Colloids Surf. B Biointerfaces 2015 134 47 58 10.1016/j.colsurfb.2015.06.027 26142628
    [Google Scholar]
  50. Liu B. Chen Z. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer. 2017 955 968
    [Google Scholar]
  51. Lee M. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. 2018 7549 7563
    [Google Scholar]
  52. Garg N.K. Singh B. Jain A. Nirbhavane P. Sharma R. Tyagi R.K. Kushwah V. Jain S. Katare O.P. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics. Colloids Surf. B Biointerfaces 2016 146 114 126 10.1016/j.colsurfb.2016.05.051 27268228
    [Google Scholar]
  53. Design D. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. 2016 911 925
    [Google Scholar]
  54. Article O. Development, In Vitro Characterization, Antitumor and Aerosol Performance Evaluation of Respirable Prepared by Self-nanoemulsification Method Drug Res (Stuttg) 2017 67 6 343 348 10.1055/s‑0043‑102404 28288490
    [Google Scholar]
  55. Serini S. Cassano R. Corsetto P. A. Rizzo A. M. Calviello G. Id S. T. Omega-3 PUFA Loaded in Resveratrol-Based Solid Lipid Nanoparticles: Physicochemical Properties and Antineoplastic Activities in Human Colorectal Cancer Cells In Vitro. Int J Mol Sci. 19 2 586 10.3390/ijms19020586 29462928
    [Google Scholar]
  56. Rajpoot K. Jain S.K. Jain S.K. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif. Cells Nanomed. Biotechnol. 2018 46 6 1236 1247 10.1080/21691401.2017.1366338 28849671
    [Google Scholar]
  57. Rodenak-Kladniew B. Islan G.A. de Bravo M.G. Durán N. Castro G.R. Castro G.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy. Colloids Surf. B Biointerfaces 2017 154 123 132 10.1016/j.colsurfb.2017.03.021 28334689
    [Google Scholar]
  58. Rahiminejad A. Dinarvand R. Johari B. Nodooshan S.J. Rashti A. Rismani E. Mahdaviani P. Saltanatpour Z. Rahiminejad S. Raigani M. Khosravani M. Preparation and investigation of indirubin‐loaded SLN nanoparticles and their anti‐cancer effects on human glioblastoma U87MG cells. Cell Biol. Int. 2019 43 1 2 11 10.1002/cbin.11037 30080277
    [Google Scholar]
  59. Dimitrios Z.C. Giulia L. Dennis G. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Elsevier B.V. 2015 10.1016/j.ijpharm.2015.07.042
    [Google Scholar]
  60. Sutaria D. Grandhi B.K. Thakkar A. Wang J. Prabhu S. Chemoprevention of pancreatic cancer using solid-lipid nanoparticulate delivery of a novel aspirin, curcumin and sulforaphane drug combination regimen. Int. J. Oncol. 2012 41 6 2260 2268 10.3892/ijo.2012.1636 23007664
    [Google Scholar]
  61. Affram K.O. Smith T. Ofori E. Krishnan S. Underwood P. Trevino J.G. Agyare E. Cytotoxic effects of gemcitabine-loaded solid lipid nanoparticles in pancreatic cancer cells. J. Drug Deliv. Sci. Technol. 2020 55 101374 101374 10.1016/j.jddst.2019.101374 31903101
    [Google Scholar]
  62. Wurz G.T. Kao C.J. Wolf M. DeGregorio M.W. Tecemotide: An antigen-specific cancer immunotherapy. Hum. Vaccin. Immunother. 2014 10 11 3383 3393 10.4161/hv.29836 25483673
    [Google Scholar]
  63. Kim M. H. S. Oral solid lipid nanoparticle composition containing docetaxel. KR101799539B1 2017
  64. Macaskie L. E. Redwood M. D. Polymerized solid lipid nanoparticles for oral or mucosal delivery of therapeutic proteins and peptides. US 20080311214A1 2008
    [Google Scholar]
  65. Peyman G.A. Cancer treatment methods using thermotherapy and/or enhanced immunotherapy. U.S. Patent 11 2023
  66. Dash A.K. Trickler W.J. Creighton University. Mucoadhesive nanoparticles for cancer treatment. 2012 U.S. Patent 8,242,165
    [Google Scholar]
  67. Liu D. Ning R. Song J. Li L. Minghui L. Shubin L. Shenyang Wanai Pride Medical Technology Co., Ltd. Assignee. Novel nano-lipid carrier for injection embodying paclitaxel series substances and preparation method thereof CN101366697A
    [Google Scholar]
  68. Mourier-Robert V. Bibette J. Goutayer M. Garcia F.N.Y. Texier-Nogues I. Commissariat a lEnergie Atomique et aux Energies Alternatives CEA. Encapsulation of lipophilic or amphiphilic therapeutic agents in nano-emulsion 2018 U.S. Patent 10,092,506
    [Google Scholar]
  69. Evans E. L. Gavrilovich T.C. Mihai E. R.C. Isbasescu I. Thelen D. Martin J. A. Mihai S. M. S. SA Targeted cancer chemotherapy using synthetic nanoparticles. 2017 002 15 354
    [Google Scholar]
  70. Fikrettin S. Zeynep I. Bilun D. Zeynep B. Elif N.Y. Mehmet H. U. Solid lipid emulsion comprising curcumin and piperin and the use of it. WO2020214125A1
  71. Nano-carrier entrapping anticancer drugs and gold nanoparticles lipids and preparation method of nano-carrier CN105078926A 2021
  72. CN101653414B CN101653414B CN101653414B CN101653414B 2021
  73. DiMasi J.A. Feldman L. Seckler A. Wilson A. Trends in risks associated with new drug development: success rates for investigational drugs. Clin. Pharmacol. Ther. 2010 87 3 272 277 10.1038/clpt.2009.295 20130567
    [Google Scholar]
  74. Matias M. Pinho J.O. Penetra M.J. Campos G. Reis C.P. Gaspar M.M. The challenging melanoma landscape: From early drug discovery to clinical approval. Cells 2021 10 11 3088 10.3390/cells10113088 34831311
    [Google Scholar]
  75. Cheow W.S. Hadinoto K. Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids Surf. B Biointerfaces 2011 85 2 214 220 10.1016/j.colsurfb.2011.02.033 21439797
    [Google Scholar]
  76. Rodriguez P. L. Harada T. Christian D. A. Pantano D. A. Tsai R. K. Discher D. E. Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles" Science (80). 2013 339 6122 971 975 10.1126/science.1229568
    [Google Scholar]
  77. Mosquera J. García I. Liz-Marzán L.M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 2018 51 9 2305 2313 10.1021/acs.accounts.8b00292 30156826
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128334022241211033220
Loading
/content/journals/cpd/10.2174/0113816128334022241211033220
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: drug delivery ; chemotherapy ; Solid lipid nanoparticles ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test