Skip to content
2000
Volume 30, Issue 39
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

The Transforming Growth Factor-Beta (TGF-β) signaling pathway plays a crucial role in the pathogenesis of diseases. This study aimed to identify differentially expressed TGF-β-related genes in liver cancer patients and to correlate these findings with clinical features and immune signatures.

Methods

The TCGA-STAD and LIRI-JP cohorts were utilized for a comprehensive analysis of TGF-β-related genes. Differential gene expression, functional enrichment, survival analysis, and machine learning techniques were employed to develop a prognostic model based on a TGF-β-related gene signature (TGFBRS).

Results

We developed a prognostic model for liver cancer based on the expression levels of nine TGF-β-related genes. The model indicates that higher TGFBRS values are associated with poorer prognosis, higher tumor grades, more advanced pathological stages, and resistance to chemotherapy. Additionally, the TGFBRS-High subtype was characterized by elevated levels of immune-suppressive cells and increased expression of immune checkpoint molecules. Using a Gradient Boosting Decision Tree (GBDT) machine learning approach, the FKBP1A gene was identified as playing a significant role in liver cancer. Notably, knocking down FKBP1A significantly inhibited the proliferation and metastatic capabilities of liver cancer cells both and .

Conclusion

Our study highlights the potential of TGFBRS in predicting chemotherapy responses and in shaping the tumor immune microenvironment in liver cancer. The results identify FKBP1A as a promising molecular target for developing preventive and therapeutic strategies against liver cancer. Our findings could potentially guide personalized treatment strategies to improve the prognosis of liver cancer patients.

© 2024 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128326151240820105525
2024-08-23
2025-01-04
Loading full text...

Full text loading...

/deliver/fulltext/cpd/30/39/CPD-30-39-05.html?itemId=/content/journals/cpd/10.2174/0113816128326151240820105525&mimeType=html&fmt=ahah

References

  1. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the Royal Marsden Hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers20241610183510.3390/cancers16101835 38791914
    [Google Scholar]
  2. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  3. LiX. RamadoriP. PfisterD. SeehawerM. ZenderL. HeikenwalderM. The immunological and metabolic landscape in primary and metastatic liver cancer.Nat. Rev. Cancer202121954155710.1038/s41568‑021‑00383‑9 34326518
    [Google Scholar]
  4. BlagotinsekK. RozmanD. Targeting signalling pathways in hepatocellular carcinoma.Curr. Pharm. Des.2017231170175 27719638
    [Google Scholar]
  5. GuptaM. ChandanK. SarwatM. Role of microRNA and long non-coding RNA in hepatocellular carcinoma.Curr. Pharm. Des.202026441542810.2174/1381612826666200115093835 31939724
    [Google Scholar]
  6. RizzoA. RicciA.D. BrandiG. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: An update.J. Pers. Med.20221211178810.3390/jpm12111788 36579504
    [Google Scholar]
  7. RizzoA. DadduzioV. RicciA.D. Lenvatinib plus pembrolizumab: The next frontier for the treatment of hepatocellular carcinoma?Expert Opin. Investig. Drugs202231437137810.1080/13543784.2021.1948532 34167433
    [Google Scholar]
  8. GuvenD.C. SahinT.K. ErulE. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  9. RizzoA. MollicaV. TateoV. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: The MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  10. KollerF. GeevargheseS. GordenD. Liver transplantation for hepatocellular carcinoma: Current role and future opportunities.Curr. Pharm. Des.200713323265327310.2174/138161207782360591 18045177
    [Google Scholar]
  11. RongruiL. NaH. ZongfangL. FanpuJ. ShiwenJ. Epigenetic mechanism involved in the HBV/HCV-related hepatocellular carcinoma tumorigenesis.Curr. Pharm. Des.201420111715172510.2174/13816128113199990533 23888939
    [Google Scholar]
  12. TommasiS. PintoR. PilatoB. ParadisoA. Molecular pathways and related target therapies in liver carcinoma.Curr. Pharm. Des.200713323279328710.2174/138161207782360663 18045179
    [Google Scholar]
  13. ShenJ. WuW.K. RenS.X. miRNAs in gastrointestinal and liver cancers: Their perspectives and clinical applications.Curr. Pharm. Des.201319713011310 23092341
    [Google Scholar]
  14. JangM.K. KimH. ChungY.H. Clinical aspects of tumor necrosis factor-α signaling in hepatocellular carcinoma.Curr. Pharm. Des.201420172799280810.2174/13816128113199990587 23944370
    [Google Scholar]
  15. BreinigM. SchirmacherP. KernM. Cyclooxygenase-2 (COX-2) -a therapeutic target in liver cancer?Curr. Pharm. Des.200713323305331510.2174/138161207782360627 18045183
    [Google Scholar]
  16. PengD. FuM. WangM. WeiY. WeiX. Targeting TGF-β signal transduction for fibrosis and cancer therapy.Mol. Cancer202221110410.1186/s12943‑022‑01569‑x 35461253
    [Google Scholar]
  17. MorikawaM. DerynckR. MiyazonoK. TGF-β and the TGF-β family: Context-dependent roles in cell and tissue physiology.Cold Spring Harb. Perspect. Biol.201685a02187310.1101/cshperspect.a021873 27141051
    [Google Scholar]
  18. LarsonC. OronskyB. CarterC.A. TGF-beta: A master immune regulator.Expert Opin. Ther. Targets202024542743810.1080/14728222.2020.1744568 32228232
    [Google Scholar]
  19. YangL. PangY. MosesH.L. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression.Trends Immunol.201031622022710.1016/j.it.2010.04.002 20538542
    [Google Scholar]
  20. BierieB. MosesH. TGF-β and cancer.Cytokine Growth Factor Rev.2006171-2294010.1016/j.cytogfr.2005.09.006 16289860
    [Google Scholar]
  21. ReichlP. HaiderC. GrubingerM. MikulitsW. TGF-β in epithelial to mesenchymal transition and metastasis of liver carcinoma.Curr. Pharm. Des.201218274135414710.2174/138161212802430477 22630087
    [Google Scholar]
  22. ZiZ. Molecular engineering of the TGF-β signaling pathway.J. Mol. Biol.2019431152644265410.1016/j.jmb.2019.05.022 31121181
    [Google Scholar]
  23. DaiX. HuaD. LuX. Roles of TGF-β in cancer hallmarks and emerging onco-therapeutic design.Expert Rev. Mol. Med.202224e4210.1017/erm.2022.37 36345661
    [Google Scholar]
  24. KatsunoY. LamouilleS. DerynckR. TGF-β signaling and epithelial-mesenchymal transition in cancer progression.Curr. Opin. Oncol.2013251768410.1097/CCO.0b013e32835b6371 23197193
    [Google Scholar]
  25. MeulmeesterE. ten DijkeP. The dynamic roles of TGF-β in cancer.J. Pathol.2011223220621910.1002/path.2785 20957627
    [Google Scholar]
  26. WangQ. LiuJ. LiR. Assessing the role of programmed cell death signatures and related gene TOP2A in progression and prognostic prediction of clear cell renal cell carcinoma.Cancer Cell Int.202424116410.1186/s12935‑024‑03346‑w 38730293
    [Google Scholar]
  27. LiuC.J. HuF.F. XiaM.X. HanL. ZhangQ. GuoA.Y. GSCALite: A web server for gene set cancer analysis.Bioinformatics201834213771377210.1093/bioinformatics/bty411 29790900
    [Google Scholar]
  28. XuL. YeY. SunY. Low FNDC5/Irisin expression is associated with aggressive phenotypes in gastric cancer.Front. Pharmacol.20221398120110.3389/fphar.2022.981201 36386179
    [Google Scholar]
  29. WangQ. WengS. SunY. High DAPK1 expression promotes tumor metastasis of gastric cancer.Biology (Basel)202211101110.3390/genes14010011 36290392
    [Google Scholar]
  30. YuL. LinN. YeY. Prognostic and chemotherapeutic response prediction by proliferation essential gene signature: Investigating POLE2 in bladder cancer progression and cisplatin resistance.J. Cancer20241561734174910.7150/jca.93023 38370377
    [Google Scholar]
  31. ZhongW. LiuH. LiF. Elevated expression of LIF predicts a poor prognosis and promotes cell migration and invasion of clear cell renal cell carcinoma.Front. Oncol.20221293412810.3389/fonc.2022.934128 35992780
    [Google Scholar]
  32. DengZ. FanT. XiaoC. TGF-β signaling in health, disease, and therapeutics.Signal Transduct. Target. Ther.2024916110.1038/s41392‑024‑01764‑w 38514615
    [Google Scholar]
  33. ClarkD.A. CokerR. Molecules in focus transforming growth factor-beta (TGF-β).Int. J. Biochem. Cell Biol.199830329329810.1016/S1357‑2725(97)00128‑3 9611771
    [Google Scholar]
  34. MosesH.L. RobertsA.B. DerynckR. The discovery and early days of TGF-β: A historical perspective.Cold Spring Harb. Perspect. Biol.201687a02186510.1101/cshperspect.a021865 27328871
    [Google Scholar]
  35. AkhurstR.J. DerynckR. TGF-β signaling in cancer - A double-edged sword.Trends Cell Biol.20011111S44S5110.1016/S0962‑8924(01)02130‑4 11684442
    [Google Scholar]
  36. DrabschY. ten DijkeP. TGF-β signalling and its role in cancer progression and metastasis.Cancer Metastasis Rev.2012313-455356810.1007/s10555‑012‑9375‑7 22714591
    [Google Scholar]
  37. GuoW. LiuH. YanY. Targeting the TGF-β signaling pathway: An updated patent review (2021-present).Expert Opin. Ther. Pat.20213499126
    [Google Scholar]
  38. SanterreK. Cortez GhioS. ProulxS. TGF-β-mediated modulation of cell-cell interactions in postconfluent maturing corneal endothelial cells.Invest. Ophthalmol. Vis. Sci.20226311310.1167/iovs.63.11.3 36194422
    [Google Scholar]
  39. ItoN. KawataS. TamuraS. Elevated levels of transforming growth factor beta messenger RNA and its polypeptide in human hepatocellular carcinoma.Cancer Res.1991511540804083 1649698
    [Google Scholar]
  40. JiangY. SunA. ZhaoY. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma.Nature2019567774725726110.1038/s41586‑019‑0987‑8 30814741
    [Google Scholar]
  41. LiL. GuoL. WangQ. DAPK1 as an independent prognostic marker in liver cancer.PeerJ20175e356810.7717/peerj.3568 28740751
    [Google Scholar]
  42. LinY. ZhongW. LinQ. SFPQ promotes the proliferation, migration and invasion of hepatocellular carcinoma cells and is associated with poor prognosis.Am. J. Cancer Res.202313622692284 37424798
    [Google Scholar]
  43. TaoH. WengS. XuL. Target-triggered assembly of plasmon resonance nanostructures for quantitative detection of lncRNA in liver cancer cells via surface enhanced Raman spectroscopy.Biosens. Bioelectron.202426111648810.1016/j.bios.2024.116488 38905860
    [Google Scholar]
  44. HuangY. WangC. LiK. Death-associated protein kinase 1 suppresses hepatocellular carcinoma cell migration and invasion by upregulation of DEAD-box helicase 20.Cancer Sci.202011182803281310.1111/cas.14499 32449268
    [Google Scholar]
  45. ShiraiY. KawataS. TamuraS. Plasma transforming growth factor-β1 in patients with hepatocellular carcinoma. Comparison with chronic liver diseases.Cancer19947392275227910.1002/1097‑0142(19940501)73:9<2275::AID‑CNCR2820730907>3.0.CO;2‑T 7513247
    [Google Scholar]
  46. SongB.C. ChungY.H. KimJ.A. Transforming growth factor-β1 as a useful serologic marker of small hepatocellular carcinoma.Cancer200294117518010.1002/cncr.10170 11815974
    [Google Scholar]
  47. LinT.H. ShaoY.Y. ChanS.Y. HuangC.Y. HsuC.H. ChengA.L. High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib.Clin. Cancer Res.201521163678368410.1158/1078‑0432.CCR‑14‑1954 25977342
    [Google Scholar]
  48. TuS. HuangW. HuangC. LuoZ. YanX. Contextual regulation of TGF-β signaling in liver cancer.Cells2019810123510.3390/cells8101235 31614569
    [Google Scholar]
  49. ZhenJ. PanJ. ZhouX. FARSB serves as a novel hypomethylated and immune cell infiltration related prognostic biomarker in hepatocellular carcinoma.Aging (Albany NY)20231582937296910.18632/aging.204619 37074800
    [Google Scholar]
  50. ZadjaliF. Al-YahyaeeA. Al-NabhaniM. Homozygosity for FARSB mutation leads to Phe-tRNA synthetase-related disease of growth restriction, brain calcification, and interstitial lung disease.Hum. Mutat.201839101355135910.1002/humu.23595 30014610
    [Google Scholar]
  51. KrenkeK. SzczałubaK. BieleckaT. FARSA mutations mimic phenylalanyl-tRNA synthetase deficiency caused by FARSB defects.Clin. Genet.201996546847210.1111/cge.13614 31355908
    [Google Scholar]
  52. AntonellisA. OprescuS.N. GriffinL.B. HeiderA. AmalfitanoA. InnisJ.W. Compound heterozygosity for loss-of-function FARSB variants in a patient with classic features of recessive aminoacyl-tRNA synthetase-related disease.Hum. Mutat.201839683484010.1002/humu.23424 29573043
    [Google Scholar]
  53. WangY. WangG. HuS. FARSB facilitates hepatocellular carcinoma progression by activating the mTORC1 signaling pathway.Int. J. Mol. Sci.202324231670910.3390/ijms242316709 38069034
    [Google Scholar]
  54. ZhangY. XuH. PiS. TanH. HuangB. ChenY. The prognostic and immunological role of FKBP1A in an integrated muti-omics cancers analysis, especially lung cancer.J. Cancer Res. Clin. Oncol.202314918165891660810.1007/s00432‑023‑05362‑1 37715833
    [Google Scholar]
  55. SabbahD.A. HajjoR. SweidanK. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors.Curr. Top. Med. Chem.2020201081583410.2174/1568026620666200303123102 32124699
    [Google Scholar]
  56. Rude VoldborgB. DamstrupL. Spang-ThomsenM. Skovgaard PoulsenH. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials.Ann. Oncol.19978121197120610.1023/A:1008209720526 9496384
    [Google Scholar]
  57. TalukdarS. EmdadL. DasS.K. FisherP.B. EGFR: An essential receptor tyrosine kinase-regulator of cancer stem cells.Adv. Cancer Res.202014716118810.1016/bs.acr.2020.04.003 32593400
    [Google Scholar]
  58. ZhouJ. TuD. PengR. RNF173 suppresses RAF/MEK/ERK signaling to regulate invasion and metastasis via GRB2 ubiquitination in hepatocellular carcinoma.Cell Commun. Signal.202321122410.1186/s12964‑023‑01241‑x 37626338
    [Google Scholar]
  59. IjazM. WangF. ShahbazM. JiangW. FathyA.H. NesaE.U. The role of Grb2 in cancer and peptides as Grb2 antagonists.Protein Pept. Lett.2018241210841095 29173143
    [Google Scholar]
  60. TariA. Lopez-BeresteinG. GRB2: A pivotal protein in signal transduction.Semin. Oncol.2001285Suppl. 1614214710.1016/S0093‑7754(01)90291‑X 11706405
    [Google Scholar]
  61. WangD. LiuG. MengY. ChenH. YeZ. JingJ. The configuration of GRB2 in protein interaction and signal transduction.Biomolecules202414325910.3390/biom14030259 38540680
    [Google Scholar]
  62. LinC.C. WieteskaL. SuenK.M. KalverdaA.P. AhmedZ. LadburyJ.E. Grb2 binding induces phosphorylation-independent activation of Shp2.Commun. Biol.20214143710.1038/s42003‑021‑01969‑7 33795832
    [Google Scholar]
  63. WuX. WangH. LianY. GTSE1 promotes cell migration and invasion by regulating EMT in hepatocellular carcinoma and is associated with poor prognosis.Sci. Rep.201771512910.1038/s41598‑017‑05311‑2 28698581
    [Google Scholar]
  64. XieH.J. NohJ.H. KimJ.K. HDAC1 inactivation induces mitotic defect and caspase-independent autophagic cell death in liver cancer.PLoS One201274e3426510.1371/journal.pone.0034265 22496786
    [Google Scholar]
  65. SunB. ZhongF.J. XuC. Programmed cell death 10 promotes metastasis and epithelial-mesenchymal transition of hepatocellular carcinoma via PP2Ac-mediated YAP activation.Cell Death Dis.202112984910.1038/s41419‑021‑04139‑z 34521817
    [Google Scholar]
  66. SauzeauV. BeignetJ. VergotenG. BaillyC. Overexpressed or hyperactivated Rac1 as a target to treat hepatocellular carcinoma.Pharmacol. Res.202217910622010.1016/j.phrs.2022.106220 35405309
    [Google Scholar]
  67. LiuJ. ZhaoK. WuS. The dual role of PDCD10 in cancers: A promising therapeutic target.Cancers20221423598610.3390/cancers14235986 36497468
    [Google Scholar]
  68. XuK. FeiW. HuoZ. PDCD10 promotes proliferation, migration, and invasion of osteosarcoma by inhibiting apoptosis and activating EMT pathway.Cancer Med.20231221673168410.1002/cam4.5025 35848121
    [Google Scholar]
  69. PengX. ZhuJ. LiuS. Signature construction and molecular subtype identification based on cuproptosis-related genes to predict the prognosis and immune activity of patients with hepatocellular carcinoma.Front. Immunol.20221399079010.3389/fimmu.2022.990790 36248822
    [Google Scholar]
  70. TangB. ZhuJ. ZhaoZ. Diagnosis and prognosis models for hepatocellular carcinoma patient’s management based on tumor mutation burden.J. Adv. Res.20213315316510.1016/j.jare.2021.01.018 34603786
    [Google Scholar]
  71. ZhouH. SongT. Conversion therapy and maintenance therapy for primary hepatocellular carcinoma.Biosci. Trends202115315516010.5582/bst.2021.01091 34039818
    [Google Scholar]
  72. DemirT. LeeS.S. KasebA.O. Systemic therapy of liver cancer.Adv. Cancer Res.202114925729410.1016/bs.acr.2020.12.001 33579425
    [Google Scholar]
  73. WangJ. GongR. ZhaoC. LeiK. SunX. RenH. Human FOXP3 and tumour microenvironment.Immunology2023168224825510.1111/imm.13520 35689826
    [Google Scholar]
  74. KimC.H. FOXP3 and its role in the immune system.Adv. Exp. Med. Biol.2009665172910.1007/978‑1‑4419‑1599‑3_2 20429413
    [Google Scholar]
  75. SaitoT. NishikawaH. WadaH. Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers.Nat. Med.201622667968410.1038/nm.4086 27111280
    [Google Scholar]
  76. Ziółkowska-SuchanekI. ŻurawekM. FOXP3: A player of immunogenetic architecture in lung cancer.Genes202415449310.3390/genes15040493 38674427
    [Google Scholar]
  77. MailerR.K.W. Alternative splicing of FOXP3-virtue and vice.Front. Immunol.2018953010.3389/fimmu.2018.00530 29593749
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128326151240820105525
Loading
/content/journals/cpd/10.2174/0113816128326151240820105525
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): chemotherapy; FKBP1A; immune microenvironment; liver cancer; signaling pathway; TGF-β
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test