Skip to content
2000
Volume 30, Issue 34
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Objective

The method of administering the initial doses of tacrolimus in recipients of pediatric lung transplantation, especially in patients with low hematocrit, is not clear. The present study aims to explore whether weight, genotype, and voriconazole co-administration influence tacrolimus initial dosage in recipients of pediatric lung transplantation with low hematocrit based on safety and efficacy using a simulation model.

Methods

The present study utilized the tacrolimus population pharmacokinetic model, which was employed in lung transplantation recipients with low hematocrit.

Results

For pediatric lung transplantation recipients not carrying and without voriconazole, the recommended tacrolimus doses for weights of 10-13, 13-19, 19-22, 22-35, 35-38, and 38-40 kg are 0.03, 0.04, 0.05, 0.06, 0.07, and 0.08 mg/kg/day, which are split into two doses, respectively. For pediatric lung transplantation recipients carrying and without voriconazole, the recommended tacrolimus doses for weights of 10-18, 18-30, and 30-40 kg are 0.06, 0.08, 0.11 mg/kg/day, which are split into two doses, respectively. For pediatric lung transplantation recipients not carrying and with voriconazole, the recommended tacrolimus doses for weights of 10-20 and 20-40 kg are 0.02 and 0.03 mg/kg/day, which are split into two doses, respectively. For pediatric lung transplantation recipients carrying and with voriconazole, the recommended tacrolimus doses for weights of 10-20, 20-33, and 33-40 kg are 0.03, 0.04, and 0.05 mg/kg/day, which are split into two doses, respectively.

Conclusion

The present study is the first to recommend the initial dosages of tacrolimus in recipients of pediatric lung transplantation with low hematocrit using a simulation model.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128318672240807112413
2024-08-09
2025-01-09
Loading full text...

Full text loading...

References

  1. Afonso JúniorJ.E. WerebeE.C. CarraroR.M. TeixeiraR.H.O.B. FernandesL.M. AbdallaL.G. SamanoM.N. Pêgo-FernandesP.M. Lung transplantation.Einstein201513229730410.1590/S1679‑45082015RW315626154550
    [Google Scholar]
  2. AuroraP EdwardsLB ChristieJD Registry of the international society for heart and lung transplantation: Twelfth official pediatric lung and heart/lung transplantation report-2009.J. Heart Lung Transplant.2009281010231030
    [Google Scholar]
  3. WeillD BendenC CorrisPA A consensus document for the selection of lung transplant candidates: 2014-An update from the pulmonary transplantation council of the international society for heart and lung transplantation.J. Heart Lung Transplant.2015341115
    [Google Scholar]
  4. GoldfarbSB HayesDJr LevveyBJ The international thoracic organ transplant registry of the international society for heart and lung transplantation: Twenty-first pediatric lung and heart/lung transplantation report-2018; Focus theme: Multiorgan transplantation.J. Heart Lung Transplant.2018371011961206
    [Google Scholar]
  5. ParulekarA.D. KaoC.C. Detection, classification, and management of rejection after lung transplantation.J. Thorac. Dis.201911S14Suppl. 14S1732S173910.21037/jtd.2019.03.8331632750
    [Google Scholar]
  6. AndreuF. ColomH. GrinyóJ.M. TorrasJ. CruzadoJ.M. LloberasN. Development of a population PK model of tacrolimus for adaptive dosage control in stable kidney transplant patients.Ther. Drug Monit.201537224625510.1097/FTD.000000000000013425254416
    [Google Scholar]
  7. ChenB. ShiH.Q. LiuX.X. ZhangW.X. LuJ.Q. XuB.M. ChenH. Population pharmacokinetics and Bayesian estimation of tacrolimus exposure in Chinese liver transplant patients.J. Clin. Pharm. Ther.201742667968810.1111/jcpt.1259928833329
    [Google Scholar]
  8. HuangL. LiuY. JiaoZ. WangJ. FangL. MaoJ. Population pharmacokinetic study of tacrolimus in pediatric patients with primary nephrotic syndrome: A comparison of linear and nonlinear Michaelis–Menten pharmacokinetic model.Eur. J. Pharm. Sci.202014310519910.1016/j.ejps.2019.10519931862313
    [Google Scholar]
  9. HuangQ. LinX. WangY. ChenX. ZhengW. ZhongX. ShangD. HuangM. GaoX. DengH. LiJ. ZengF. MoX. Tacrolimus pharmacokinetics in pediatric nephrotic syndrome: A combination of population pharmacokinetic modelling and machine learning approaches to improve individual prediction.Front. Pharmacol.20221394212910.3389/fphar.2022.94212936457704
    [Google Scholar]
  10. JingY. KongY. HouX. LiuH. FuQ. JiaoZ. PengH. WeiX. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients.J. Clin. Pharm. Ther.20214641117112810.1111/jcpt.1340733768546
    [Google Scholar]
  11. LiL. ZhuM. LiD.Y. GuoH.L. HuY.H. XuZ.Y. JingX. ChenF. ZhaoF. LiY.M. XuJ. JiaoZ. Dose tailoring of tacrolimus based on a non-linear pharmacokinetic model in children with refractory nephrotic syndrome.Int. Immunopharmacol.20219810782710.1016/j.intimp.2021.10782734284341
    [Google Scholar]
  12. LiZ. LiR. NiuW. ZhengX. WangZ. ZhongM. QiuX. Population pharmacokinetic modeling combined with machine learning approach improved tacrolimus trough concentration prediction in Chinese adult liver transplant recipients.J. Clin. Pharmacol.202363331432510.1002/jcph.215636097320
    [Google Scholar]
  13. LiaoM. WangM. ZhuX. ZhaoL. ZhaoM. Tacrolimus population pharmacokinetic model in adult Chinese patients with nephrotic syndrome and dosing regimen identification using monte carlo simulations.Ther. Drug Monit.202244561562410.1097/FTD.000000000000100836101928
    [Google Scholar]
  14. LloberasN. GrinyóJ.M. ColomH. Vidal-AlabróA. FontovaP. Rigo-BonninR. PadróA. BestardO. MelilliE. MonteroN. ColomaA. ManonellesA. MeneghiniM. FavàA. TorrasJ. CruzadoJ.M. A prospective controlled, randomized clinical trial of kidney transplant recipients developed personalized tacrolimus dosing using model-based Bayesian Prediction.Kidney Int.2023104484085010.1016/j.kint.2023.06.02137391040
    [Google Scholar]
  15. ShaoJ. WangC. FuP. ChenF. ZhangY. WeiJ. Impact of donor and recipient CYP3A5*3 genotype on tacrolimus population pharmacokinetics in chinese adult liver transplant recipients.Ann. Pharmacother.202054765266110.1177/106002801989705031888346
    [Google Scholar]
  16. WangCB ZhangYJ ZhaoMM Dosage optimization of tacrolimus based on the glucocorticoid dose and pharmacogenetics in adult patients with systemic lupus erythematosus.Int. Immunopharmacol.2023124Pt A11086610.1016/j.intimp.2023.110866
    [Google Scholar]
  17. WangC.B. ZhangY. ZhaoM.M. ZhaoL. Population pharmacokinetic analyses of tacrolimus in non-transplant patients: A systematic review.Eur. J. Clin. Pharmacol.202379789791310.1007/s00228‑023‑03503‑637261481
    [Google Scholar]
  18. WangX. HanY. ChenC. MaL. XiaoH. ZhouY. CuiY. WangF. SuB. YaoY. DingJ. Population pharmacokinetics and dosage optimization of tacrolimus in pediatric patients with nephrotic syndrome.Int. J. Clin. Pharmacol. Ther.201957312513410.5414/CP20335530663980
    [Google Scholar]
  19. ZhouS. ZhangR. LvC. LuJ. WeiY. LiC. ChenM. LiQ. LiuT. Initial dosage optimization of tacrolimus in pediatric patients with thalassemia major undergoing hematopoietic stem cell transplantation based on population pharmacokinetics.Ann. Pharmacother.202155444045110.1177/106002802095903932924532
    [Google Scholar]
  20. ZhuW. XueL. PengH. DuanZ. ZhengX. CaoD. WenJ. WeiX. Tacrolimus population pharmacokinetic models according to CYP3A5/CYP3A4/POR genotypes in Chinese Han renal transplant patients.Pharmacogenomics201819131013102510.2217/pgs‑2017‑013930040022
    [Google Scholar]
  21. MianoT.A. FleschJ.D. FengR. ForkerC.M. BrownM. OysterM. KalmanL. RushefskiM. CantuE.III PorteusM. YangW. LocalioA.R. DiamondJ.M. ChristieJ.D. ShashatyM.G.S. Early tacrolimus concentrations after lung transplant are predicted by combined clinical and genetic factors and associated with acute kidney injury.Clin. Pharmacol. Ther.2020107246247010.1002/cpt.162931513279
    [Google Scholar]
  22. ChristieJ.D. EdwardsL.B. KucheryavayaA.Y. AuroraP. DobbelsF. KirkR. RahmelA.O. StehlikJ. HertzM.I. The registry of the international society for heart and lung transplantation: Twenty-seventh official adult lung and heart-lung transplant report-2010.J. Heart Lung Transplant.201029101104111810.1016/j.healun.2010.08.00420870165
    [Google Scholar]
  23. CaiX. SongH. JiaoZ. YangH. ZhuM. WangC. WeiD. ShiL. WuB. ChenJ. Population pharmacokinetics and dosing regimen optimization of tacrolimus in Chinese lung transplant recipients.Eur. J. Pharm. Sci.202015210544810.1016/j.ejps.2020.10544832621968
    [Google Scholar]
  24. WangD.D. MeiY.Q. YangL. DingK.W. XueJ.J. WangX. HeS.M. WeiQ.L. Optimization of initial dose regimen of tacrolimus in paediatric lung transplant recipients based on Monte Carlo simulation.J. Clin. Pharm. Ther.202247101659166610.1111/jcpt.1371735716040
    [Google Scholar]
  25. HuK. HeS.M. ZhangC. ZhangY.J. GuQ. ShiH.Z. WangD.D. Optimizing the initial tacrolimus dosage in Chinese children with lung transplantation within normal hematocrit levels.Front Pediatr.202412109045510.3389/fped.2024.109045538357508
    [Google Scholar]
  26. WuQ. MarescauxC. QinX. KesslerR. YangJ. Heterogeneity of radiological spectrum in tacrolimus-associated encephalopathy after lung transplantation.Behav. Neurol.201420141910.1155/2014/93180824970980
    [Google Scholar]
  27. ChenL. LuX. TanG. ZhuL. LiuY. LiM. Impact of body composition on pharmacokinetics of tacrolimus in liver transplantation recipients.Xenobiotica202050219620110.1080/00498254.2019.160791830995884
    [Google Scholar]
  28. RedingR. Tacrolimus in pediatric liver transplantation.Pediatr. Transplant.20026644745110.1034/j.1399‑3046.2002.t01‑3‑00002.x12453195
    [Google Scholar]
  29. ChenF. YongJ.K. ShenC. ZhouT. FengM. WanP. LuoY. LinH. QianY. XiaQ. High intra-patient variability of tacrolimus within post-operative 1 month predicted worse 1-year outcomes in pediatric liver transplant recipients.Eur. J. Clin. Pharmacol.20248071017102710.1007/s00228‑024‑03663‑z38502358
    [Google Scholar]
  30. DongC. SongZ. SunC. WangK. ZhangW. ChenJ. ZhengW. YangY. WangZ. HanC. JiaoL. ZhangG. XieE. GaoW. ShenZ. Basiliximab induction and postoperative steroid-free immunosuppression with tacrolimus in pediatric liver transplantation: A randomized clinical trial.Transplantation202410881769177510.1097/TP.000000000000495138419149
    [Google Scholar]
  31. DuY. ZhangY. YangZ. LiY. WangX. LiZ. RenL. LiY. Artificial neural network analysis of determinants of tacrolimus pharmacokinetics in liver transplant recipients.Ann. Pharmacother.202458546947910.1177/1060028023119094337559252
    [Google Scholar]
  32. HuangS. SongW. JiangS. LiY. WangM. YangN. ZhuH. Pharmacokinetic interactions between tacrolimus and Wuzhi capsule in liver transplant recipients: Genetic polymorphisms affect the drug interaction.Chem. Biol. Interact.202439111090610.1016/j.cbi.2024.11090638340974
    [Google Scholar]
  33. KomenkulV. SukarnjanasetW. KomolmitP. WattanavijitkulT. External validation of population pharmacokinetic models of tacrolimus in Thai adult liver transplant recipients.Eur. J. Clin. Pharmacol.20248081229124010.1007/s00228‑024‑03692‑838695888
    [Google Scholar]
  34. PanB. LiY. WangX. OuY. HengG. LiuX. JiangD. LiuW. HuangY. HuF. XuZ. ChenZ. ZhangL. ZhangC. Adequate cumulative exposure to tacrolimus and low tacrolimus variability decrease the incidence of biliary complications after liver transplantation.Int. Immunopharmacol.202412811146110.1016/j.intimp.2023.11146138176344
    [Google Scholar]
  35. ParantF. DelignetteM.C. CharpiatB. LacailleL. LebosseF. MonneretG. MohkamK. MabrutJ.Y. AubrunF. HeyerL. AntoniniT. Tacrolimus monitoring in liver transplant recipients, posttransplant cholestasis: A comparative between 2 commercial immunoassays and a liquid chromatography-tandem mass spectrometry method.Ther. Drug Monit.202446444645510.1097/FTD.000000000000120138648663
    [Google Scholar]
  36. SoaresM.E. CostaG. GuerraL. MoraisM.C. VazN. CodesL. BittencourtP.L. Influence of tacrolimus intrapatient variability on allograft rejection frequency and survival following liver transplantation.Ther. Drug Monit.202446445645910.1097/FTD.000000000000119238648652
    [Google Scholar]
  37. VanlerbergheB.T.K. van MalensteinH. Sainz-BarrigaM. JochmansI. CassimanD. MonbaliuD. van der MerweS. PirenneJ. NevensF. VerbeekJ. Tacrolimus drug exposure level and smoking are modifiable risk factors for early de novo malignancy after liver transplantation for alcohol-related liver disease.Transpl. Int.2024371205510.3389/ti.2024.1205538440132
    [Google Scholar]
  38. ZhuF. WangY.M. NiM. LiangY. HuangJ.H. WangX.H. ChengF. LuL. Diagnosis and therapy of tacrolimus toxicity in a liver transplant recipient during COVID-19 treatment.Hepatobiliary Pancreat. Dis. Int.202423332633010.1016/j.hbpd.2023.10.00437852915
    [Google Scholar]
  39. HelmickR.A. EymardC.M. NaikS. EasonJ.D. NezakatgooN. NairS. VanattaJ.M. A report of a prospective randomized trial of extended-release tacrolimus versus immediate release tacrolimus after liver transplantation with anti-thymocyte induction in a steroid free protocol.Clin. Transplant.2024381e1517210.1111/ctr.1517237897198
    [Google Scholar]
  40. LaoQ. WuX. ZhengX. HuJ. HuangS. LiD. DuY. YangN. ZhuH. Effect of tacrolimus time in therapeutic range on postoperative recurrence in patients undergoing liver transplantation for liver cancer.Ther. Drug Monit.2024461424810.1097/FTD.000000000000111937315150
    [Google Scholar]
  41. MajidZ. KhanS.A. HanifF.M. LaeeqM. TasneemA.A. LuckN.H. MubarakM. Management of tacrolimus-induced toxicity with normal serum levels after liver transplant.Exp. Clin. Transplant.202422Suppl. 133834138385422
    [Google Scholar]
  42. Trezeguet RenattiG. RivaN. MinettoJ. ReijensteinH. GoleM. MezaV. BosalehA. LicciardoneN. AredesD. LaufermanL. CervioG. DipM. SchaiquevichP. HalacE. ImventarzaO. Feasibility of steroid-free tacrolimus-basiliximab immunosuppression in pediatric liver transplantation and predictors for steroid requirement.Liver Transpl.2024301617110.1097/LVT.000000000000021637439661
    [Google Scholar]
  43. VenkatakrishnanG. KathirvelM. AmmaBS MuraleedharanAK MathewJS. VargheseCT NairK. MallickS. Srinivasan DM. GopalakrishnanU. BalakrishnanD. Othiyil VayothS. SurendranS. Randomized controlled trial of sustained release tacrolimus vs. twice daily tacrolimus in adult living donor liver transplantation.HPB (Oxford)202426217117810.1016/j.hpb.2023.10.01737940407
    [Google Scholar]
  44. YuM. LiuM. ZhangW. MingY. Pharmacokinetics, pharmacodynamics and pharmacogenetics of tacrolimus in kidney transplantation.Curr. Drug Metab.201819651352210.2174/138920021966618012915194829380698
    [Google Scholar]
  45. OberbauerR. BestardO. FurianL. MaggioreU. PascualJ. RostaingL. BuddeK. Optimization of tacrolimus in kidney transplantation: New pharmacokinetic perspectives.Transplant. Rev.202034210053110.1016/j.trre.2020.10053131955920
    [Google Scholar]
  46. AmmarM. YaichS. HakimA. GhozziH. SahnounZ. Ben HmidaM. ZghalK. Ben MahmoudL. Tacrolimus trough level and oxidative stress in Tunisian kidney transplanted patients.Ren. Fail.2024461231386310.1080/0886022X.2024.231386338345031
    [Google Scholar]
  47. HuangH.X. XiangY. GeorgeR. WinterbergP. SerlucoA. LivermanR. YildirimI. GarroR. BK polyomavirus DNAemia, allograft rejection, and de novo donor-specific antibodies after lowering target tacrolimus levels in pediatric kidney transplant recipients.Pediatr. Transplant.2024285e1479110.1111/petr.1479138808701
    [Google Scholar]
  48. IzarnO. MorinM.P. Ntobe-BunketeB. GolbinL. Ferrand-SorreM.J. TronC. LemaitreF. Follow the area under the curve not the trough concentration: A case study of tacrolimus monitoring in a kidney transplant recipient cotreated with phenobarbital.Ther. Drug Monit.202446328528710.1097/FTD.000000000000120338648637
    [Google Scholar]
  49. León-JanampaN. BoennecN. Le TillyO. ErehS. HerbetG. MoreauA. GataultP. LonguetH. BarbetC. BüchlerM. BaronC. Gaudy-GraffinC. BrandD. MarletJ. Relevance of tacrolimus trough concentration and hepatitis E virus genetic changes in kidney transplant recipients with chronic hepatitis E.Kidney Int. Rep.2024951333134210.1016/j.ekir.2024.01.05438707810
    [Google Scholar]
  50. MaslauskieneR. VaiciunieneR. RadzevicieneA. TretjakovsP. GersoneG. StankeviciusE. BumblyteI.A. The influence of tacrolimus exposure and metabolism on the outcomes of kidney transplants.Biomedicines2024125112510.3390/biomedicines1205112538791087
    [Google Scholar]
  51. NaguibH. Katz-GreenbergG. HarrisM. GommerJ. YangL.Z. ErkanliA. ByrnsJ. Evaluation of tacrolimus concentrations and clinical outcomes between extended and immediate release formulations in kidney transplant.J. Pharm. Pract.20240897190024124886210.1177/0897190024124886238683344
    [Google Scholar]
  52. ObayemiJ.E. CallansL. NairN. GaoH. GandlaD. LozaB.L. GaoS. MohebnasabM. Trofe-ClarkJ. JacobsonP. KeatingB. Assessing the utility of a genotype-guided tacrolimus equation in african american kidney transplant recipients: A single institution retrospective study.J. Clin. Pharmacol.202464894495210.1002/jcph.246138766706
    [Google Scholar]
  53. van GelderT. GelinckA. MeziyerhS. de VriesA.P.J. MoesD.J.A.R. Therapeutic drug monitoring of tacrolimus after kidney transplantation: Trough concentration or area under curve-based monitoring?Br. J. Clin. Pharmacol.2024bcp.1609810.1111/bcp.1609838844792
    [Google Scholar]
  54. ZhangY. DuY. RenS. LiY. ZhangX. CaoX. LiuF. ZongH. LiY. CYP3A5 genotype-dependent drug- drug interaction between tacrolimus and voriconazole in Chinese kidney transplant patients.Ann. Pharmacother.202458660561310.1177/1060028023119739937702380
    [Google Scholar]
  55. ZhangY. ShenB. LiY. ZongH. ZhangX. CaoX. LiuF. LiY. Drug–drug interaction between tacrolimus and caspofungin in Chinese kidney transplant patients with different CYP3A5 genotypes.Ther. Adv. Drug Saf.2024152042098624124316510.1177/2042098624124316538646424
    [Google Scholar]
  56. Alatorre-MorenoE.V. Saldaña-CruzA.M. Pérez-GuerreroE.E. Morán-MoguelM.C. Contreras-HaroB. López-de La MoraD.A. Dávalos-RodríguezI.P. Marín-MedinaA. Rivera-CamerasA. Balderas-PeñaL.M.A. Gómez-RamosJ.J. Cortés-SanabriaL. Salazar-PáramoM. Association of CYP3A4-392A/G, CYP3A5-6986A/G, and ABCB1-3435C/T polymorphisms with tacrolimus dose, serum concentration, and biochemical parameters in mexican patients with kidney transplant.Genes202415449710.3390/genes1504049738674430
    [Google Scholar]
  57. MiedziaszczykM. KarczewskiM. GrabowskiT. WolcA. Idasiak-PiechockaI. Assessment of omeprazole and famotidine effects on the pharmacokinetics of tacrolimus in patients following kidney transplant–randomized controlled trial.Front. Pharmacol.202415135232310.3389/fphar.2024.135232338638867
    [Google Scholar]
  58. RotarescuC.A. MarunteluI. RotarescuI. ConstantinescuA.E. ConstantinescuI. Single nucleotide polymorphisms of CYP3A4 and CYP3A5 in romanian kidney transplant recipients: Effect on tacrolimus pharmacokinetics in a single-center experience.J. Clin. Med.2024137196810.3390/jcm1307196838610733
    [Google Scholar]
  59. SonmezO. OzcanS.G. KaracaC. AtliZ. DincerM.T. TrabulusS. SeyahiN. Effects of antithymocyte globulin, basiliximab, and induction-free treatment in living donor kidney transplant recipients on tacrolimus-based immunosuppression.Exp. Clin. Transplant.202422427027638742317
    [Google Scholar]
  60. XieW. FanS. LiuR. YanW. SuC. ZhengK. WangX. WangZ. Tacrolimus intra-patient variability measures and its associations with allograft clinical outcomes in kidney transplantation.Transplant. Rev.202438310084210.1016/j.trre.2024.10084238537484
    [Google Scholar]
  61. Crespo-LeiroM.G. Tacrolimus in heart transplantation.Transplant. Proc.20033551981198310.1016/S0041‑1345(03)00566‑912962869
    [Google Scholar]
  62. HanY. ZhouH. CaiJ. HuangJ. ZhangJ. ShiS.J. LiuY.N. ZhangY. Prediction of tacrolimus dosage in the early period after heart transplantation: A population pharmacokinetic approach.Pharmacogenomics2019201213510.2217/pgs‑2018‑011630730287
    [Google Scholar]
  63. AlamA. van ZylJ.S. PatelR. JamilA.K. FeliusJ. CareyS.A. GottliebR.L. Guerrero-MirandaC.Y. KaleP. HallS.A. SamT. Three-year outcomes of de novo tacrolimus extended-release tablets (LCPT) compared to twice- daily tacrolimus in adult heart transplantation.Transpl. Immunol.20248310200910.1016/j.trim.2024.10200938325525
    [Google Scholar]
  64. LiuL. ZhouY. HuangX. ChenH. GongZ. ZhangJ. ZengF. ZhouH. ZhangY. Effects of WuZhi preparations on tacrolimus in pediatric and adult patients carrying the CYP3A5*1 allele of heart transplant during the early period after transplantation.Clin. Transplant.2024381e1523710.1111/ctr.1523738289887
    [Google Scholar]
  65. LiuM. HernandezS. AquilanteC.L. DeiningerK.M. LindenfeldJ. SchlendorfK.H. Van DriestS.L. Composite CYP3A (CYP3A4 and CYP3A5) phenotypes and influence on tacrolimus dose adjusted concentrations in adult heart transplant recipients.Pharmacogenomics J.2024242410.1038/s41397‑024‑00325‑238360955
    [Google Scholar]
  66. PaschierA. DestereA. MonchaudC. LabriffeM. MarquetP. WoillardJ.B. Tacrolimus population pharmacokinetics in adult heart transplant patients.Br. J. Clin. Pharmacol.202389123584359510.1111/bcp.1585737477064
    [Google Scholar]
  67. PeiL. LiR. ZhouH. DuW. GuY. JiangY. WangY. ChenX. SunJ. ZhuJ. A physiologically based pharmacokinetic approach to recommend an individual dose of tacrolimus in adult heart transplant recipients.Pharmaceutics20231511258010.3390/pharmaceutics1511258038004558
    [Google Scholar]
  68. TamayoC. HuertasJ. SanmartinD. OrdóñezA. ÁvilaD. MendozaF. OrozcoE. Cost-effectiveness of tacrolimus compared with cyclosporine for immunosuppression therapy in patients who underwent heart transplant in colombia.Value Health Reg. Issues202338616810.1016/j.vhri.2023.06.00537573854
    [Google Scholar]
  69. ZhaoJ. SetchellK.D.R. ZhaoX. GalandiS. GarrB.N. GaoZ. ChinC. StarkS. SteeleP.E. RyanT.D. Use of volumetric absorptive microsampling and parallel reaction monitoring mass spectrometry for tacrolimus blood trough measurements at home in pediatric heart transplant patients.J. Mass Spectrom. Adv. Clin. Lab.2024311710.1016/j.jmsacl.2023.11.00438163003
    [Google Scholar]
  70. DarleyD.R. CarlosL. HennigS. LiuZ. DayR. GlanvilleA.R. Tacrolimus exposure early after lung transplantation and exploratory associations with acute cellular rejection.Eur. J. Clin. Pharmacol.201975787988810.1007/s00228‑019‑02658‑530859243
    [Google Scholar]
  71. SikmaM.A. HunaultC.C. van de GraafE.A. VerhaarM.C. KeseciogluJ. de LangeD.W. MeulenbeltJ. High tacrolimus blood concentrations early after lung transplantation and the risk of kidney injury.Eur. J. Clin. Pharmacol.201773557358010.1007/s00228‑017‑2204‑828132082
    [Google Scholar]
  72. StaatzC.E. TettS.E. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation.Clin. Pharmacokinet.2004431062365310.2165/00003088‑200443100‑0000115244495
    [Google Scholar]
  73. RingeB. BraunF. LorfT. CaneloR. SchützE. SattlerB. RamadoriG. Tacrolimus and mycophenolate mofetil in clinical liver transplantation: Experience with a steroid-sparing concept.Transplant. Proc.19983041415141610.1016/S0041‑1345(98)00296‑69636573
    [Google Scholar]
  74. HoornE.J. WalshS.B. McCormickJ.A. FürstenbergA. YangC.L. RoeschelT. PaliegeA. HowieA.J. ConleyJ. BachmannS. UnwinR.J. EllisonD.H. The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension.Nat. Med.201117101304130910.1038/nm.249721963515
    [Google Scholar]
  75. BentataY. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity.Artif. Organs202044214015210.1111/aor.1355131386765
    [Google Scholar]
  76. SunJ.Y. XuZ.J. SunF. GuoH.L. DingX.S. ChenF. XuJ. Individualized tacrolimus therapy for pediatric nephrotic syndrome: Considerations for ontogeny and pharmacogenetics of CYP3A.Curr. Pharm. Des.201824242765277310.2174/138161282466618082910183630156148
    [Google Scholar]
  77. van GelderT. Drug interactions with tacrolimus.Drug Saf.2002251070771210.2165/00002018‑200225100‑0000312167066
    [Google Scholar]
  78. WangD.D. ChenX. LiZ.P. Wuzhi capsule and haemoglobin influence tacrolimus elimination in paediatric kidney transplantation patients in a population pharmacokinetics analysis: A retrospective study.J. Clin. Pharm. Ther.201944461161710.1111/jcpt.1282830864229
    [Google Scholar]
  79. ChenX. WangD. ZhengF. ZhuL. HuangY. ZhuY. HuangY. XuH. LiZ. Effects of posaconazole on tacrolimus population pharmacokinetics and initial dose in children with Crohn’s disease undergoing hematopoietic stem cell transplantation.Front. Pharmacol.20221375852410.3389/fphar.2022.75852435496296
    [Google Scholar]
  80. ChenX. WangD.D. XuH. LiZ.P. Population pharmacokinetics and pharmacogenomics of tacrolimus in Chinese children receiving a liver transplant: Initial dose recommendation.Transl. Pediatr.20209557658610.21037/tp‑20‑8433209719
    [Google Scholar]
  81. HuangX. ZhouY. ZhangJ. XiangH. MeiH. LiuL. TongL. ZengF. HuangY. ZhouH. ZhangY. The importance of CYP2C19 genotype in tacrolimus dose optimization when concomitant with voriconazole in heart transplant recipients.Br. J. Clin. Pharmacol.202288104515452510.1111/bcp.1538535508605
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128318672240807112413
Loading
/content/journals/cpd/10.2174/0113816128318672240807112413
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test