Skip to content
2000
Volume 30, Issue 37
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Background

The growing attention to NK cells for cancer cell therapy is associated with the need to establish highly efficient protocols for their genetic modification, particularly by retroviral transduction.

Objective

In this work, we have optimized several stages of the retroviral-based modification process, and determined the distribution of the amino acid transporter ASCT2 between NK cell subsets.

Methods

Retroviral particles were produced using the Phoenix Ampho cell line transfected with the calcium phosphate method . We used RD114-based retroviral transduction for lymphocyte cell lines and primary NK cells.

Results

We have determined the optimal time to collect the RD114-pseudotyped viral supernatants resulting in the titer of viral particles required for efficient NK cell modification to be between 48 and 72 hours. Retroviral modification by retronectin-based method did not alter NK cell functional activity and cell survival. We identified differences in the Multiplicity of Infection (MOI) among cell lines that were partially associated with the ASCT2 surface expression. Cells with higher ASCT2 levels were more susceptible to transduction with RD114-pseudotyped viral particles. Higher ASCT2 expression levels were revealed in activated CD57+ and KIR2DL2DL3+ NK cells compared to their negative counterparts.

Conclusion

Our findings provide a more nuanced understanding of NK cell transduction, offering valuable insights for improving therapeutic applications involving NK cell modification.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128314633240724060916
2024-10-01
2025-01-05
Loading full text...

Full text loading...

References

  1. SuerthJ.D. MorganM.A. KloessS. HecklD. NeudörflC. FalkC.S. KoehlU. SchambachA. Efficient generation of gene-modified human natural killer cells via alpharetroviral vectors.J. Mol. Med. (Berl.)2016941839310.1007/s00109‑015‑1327‑626300042
    [Google Scholar]
  2. RobbinsG.M. WangM. PomeroyE.J. MoriarityB.S. Nonviral genome engineering of natural killer cells.Stem Cell Res. Ther.202112135010.1186/s13287‑021‑02406‑634134774
    [Google Scholar]
  3. PalamarchukA.I. AlekseevaN.A. StreltsovaM.A. UstiuzhaninaM.O. KobyzevaP.A. KustS.A. GrechikhinaM.V. BoykoA.A. ShustovaO.A. SapozhnikovA.M. KovalenkoE.I. Increased susceptibility of the CD57− NK cells expressing KIR2DL2/3 and NKG2C to iCasp9 gene retroviral transduction and the relationships with proliferative potential, activation degree, and death induction response.Int. J. Mol. Sci.202122241332610.3390/ijms22241332634948123
    [Google Scholar]
  4. StreltsovaM.A. BoykoA.A. UstiuzhaninaM.O. PalamarchukA.I. AlekseevaN.A. VelichinskiiR.A. VavilovaJ.D. GrechikhinaM.V. SapozhnikovA.M. DeevS.M. KovalenkoE.I. Subpopulation heterogeneity of NK cells during the genetic modification for subsequent use in targeted therapy.Dokl. Biochem. Biophys.2022507138038210.1134/S160767292234014236787007
    [Google Scholar]
  5. StreltsovaM.A. UstiuzhaninaM.O. BarsovE.V. KustS.A. VelichinskiiR.A. KovalenkoE.I. Telomerase reverse transcriptase increases proliferation and lifespan of human NK cells without immortalization.Biomedicines20219666210.3390/biomedicines906066234207853
    [Google Scholar]
  6. TöpferK. CartellieriM. MichenS. WiedemuthR. MüllerN. LindemannD. BachmannM. FüsselM. SchackertG. TemmeA. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy.J. Immunol.201519473201321210.4049/jimmunol.140033025740942
    [Google Scholar]
  7. LiuE. TongY. DottiG. ShaimH. SavoldoB. MukherjeeM. OrangeJ. WanX. LuX. ReynoldsA. GageaM. BanerjeeP. CaiR. BdaiwiM.H. BasarR. MuftuogluM. LiL. MarinD. WierdaW. KeatingM. ChamplinR. ShpallE. RezvaniK. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity.Leukemia201832252053110.1038/leu.2017.22628725044
    [Google Scholar]
  8. OelsnerS. WaldmannA. BillmeierA. RöderJ. LindnerA. UllrichE. MarschalekR. DottiG. JungG. Große-HovestL. OberoiP. BaderP. WelsW.S. Genetically engineered CAR NK cells display selective cytotoxicity against FLT3- positive B-ALL and inhibit in vivo leukemia growth.Int. J. Cancer201914571935194510.1002/ijc.3226930860598
    [Google Scholar]
  9. NanbakhshA. MalarkannanS. Dextran enhances the lentiviral transduction efficiency of murine and human primary NK cells. Methods Mol Biol Humana Press Inc 2020; 2097: 107-13.10.1007/978‑1‑0716‑0203‑4_7
    [Google Scholar]
  10. YangY.W. HsiehY.C. Protamine sulfate enhances the transduction efficiency of recombinant adeno-associated virus-mediated gene delivery.Pharm. Res.200118792292710.1023/A:101092392484411496950
    [Google Scholar]
  11. SeitzB. BaktanianE. GordonE.M. AndersonW.F. LaBreeL. McDonnellP.J. Retroviral vector-mediated gene transfer into keratocytes: In vitro effects of polybrene and protamine sulfate.Graefes Arch. Clin. Exp. Ophthalmol.1998236860261210.1007/s0041700501299717657
    [Google Scholar]
  12. BariR. GranzinM. TsangK.S. RoyA. KruegerW. OrentasR. SchneiderD. PfeiferR. MoekerN. VerhoeyenE. DropulicB. LeungW. A distinct subset of highly proliferative and Lentiviral Vector (LV)-transducible NK cells define a readily engineered subset for adoptive cellular therapy.Front. Immunol.201910200110.3389/fimmu.2019.0200131507603
    [Google Scholar]
  13. RajabzadehA. HamidiehA.A. RahbarizadehF. Spinoculation and retronectin highly enhance the gene transduction efficiency of Mucin-1-specific chimeric antigen receptor (CAR) in human primary T cells.BMC Mol. Cell Biol.20212215710.1186/s12860‑021‑00397‑z34814824
    [Google Scholar]
  14. ColamartinoA.B.L. LemieuxW. BifshaP. NicolettiS. ChakravartiN. SanzJ. RoméroH. SelleriS. BélandK. GuiotM. Tremblay-LaganièreC. DicaireR. BarreiroL. LeeD.A. VerhoeyenE. HaddadE. Efficient and robust NK-cell transduction with baboon envelope pseudotyped lentivector.Front. Immunol.201910287310.3389/fimmu.2019.0287331921138
    [Google Scholar]
  15. MüllerS. BexteT. GebelV. KalenseeF. StolzenbergE. HartmannJ. KoehlU. SchambachA. WelsW.S. ModlichU. UllrichE. High cytotoxic efficiency of lentivirally and alpharetrovirally engineered CD19-specific chimeric antigen receptor natural killer cells against acute lymphoblastic leukemia.Front. Immunol.202010312310.3389/fimmu.2019.0312332117200
    [Google Scholar]
  16. HolicN. FenardD. Production of retrovirus-based vectors in mildly acidic pH conditions.Methods Mol. Biol.20161448414810.1007/978‑1‑4939‑3753‑0_327317171
    [Google Scholar]
  17. O’KeefeE.P. Nucleic acid delivery: Lentiviral and retroviral vectors.Labome com2013317410.13070/mm.en.3.174
    [Google Scholar]
  18. Gutierrez-GuerreroA. CossetF.L. VerhoeyenE. Lentiviral vector pseudotypes: Precious tools to improve gene modification of hematopoietic cells for research and gene therapy.Viruses2020129101610.3390/v1209101632933033
    [Google Scholar]
  19. FrechaC. CostaC. NègreD. AmiracheF. TronoD. RioP. BuerenJ. CossetF.L. VerhoeyenE. A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice.Blood201211951139115010.1182/blood‑2011‑04‑34661922117040
    [Google Scholar]
  20. TrobridgeG.D. WuR.A. HansenM. IronsideC. WattsK.L. OlsenP. BeardB.C. KiemH.P. Cocal-pseudotyped lentiviral vectors resist inactivation by human serum and efficiently transduce primate hematopoietic repopulating cells.Mol. Ther.201018472573310.1038/mt.2009.28219997089
    [Google Scholar]
  21. MarinV. StornaiuoloA. PiovanC. CornaS. BossiS. PemaM. GiulianiE. ScavulloC. ZucchelliE. BordignonC. RizzardiG.P. BovolentaC. RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope.Mol. Ther. Methods Clin. Dev.201631603310.1038/mtm.2016.3327222840
    [Google Scholar]
  22. Di NunzioF. PiovaniB. CossetF.L. MavilioF. StornaiuoloA. Transduction of human hematopoietic stem cells by lentiviral vectors pseudotyped with the RD114-TR chimeric envelope glycoprotein.Hum. Gene Ther.200718981182010.1089/hum.2006.13817824830
    [Google Scholar]
  23. Girard-GagnepainA. AmiracheF. CostaC. LévyC. FrechaC. FusilF. NègreD. LavilletteD. CossetF.L. VerhoeyenE. Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs.Blood201412481221123110.1182/blood‑2014‑02‑55816324951430
    [Google Scholar]
  24. MarinM. LavilletteD. KellyS.M. KabatD. N-linked glycosylation and sequence changes in a critical negative control region of the ASCT1 and ASCT2 neutral amino acid transporters determine their retroviral receptor functions.J. Virol.20037752936294510.1128/JVI.77.5.2936‑2945.200312584318
    [Google Scholar]
  25. JiangH. ZhangN. TangT. FengF. SunH. QuW. Target the human Alanine/Serine/Cysteine Transporter 2(ASCT2): Achievement and future for novel cancer therapy.Pharmacol. Res.202015810484410.1016/j.phrs.2020.10484432438035
    [Google Scholar]
  26. JensenH. PotempaM. GotthardtD. LanierL.L. Cutting edge: IL-2–induced expression of the amino acid transporters SLC1A5 and CD98 is a prerequisite for NKG2D-mediated activation of human NK cells.J. Immunol.201719961967197210.4049/jimmunol.170049728784848
    [Google Scholar]
  27. DongH. HamJ.D. HuG. XieG. VergaraJ. LiangY. AliA. TarannumM. DonnerH. BaginskaJ. AbdulhamidY. DinhK. SoifferR.J. RitzJ. GlimcherL.H. ChenJ. RomeeR. Memory-like NK cells armed with a neoepitope-specific CAR exhibit potent activity against NPM1 mutated acute myeloid leukemia.Proc. Natl. Acad. Sci. USA202211925e212237911910.1073/pnas.212237911935696582
    [Google Scholar]
  28. AlmutairiS.M. AliA.K. HeW. YangD.S. GhorbaniP. WangL. FullertonM.D. LeeS.H. Interleukin-18 up-regulates amino acid transporters and facilitates amino acid–induced mTORC1 activation in natural killer cells.J. Biol. Chem.2019294124644465510.1074/jbc.RA118.00589230696773
    [Google Scholar]
  29. FangF. XieS. ChenM. LiY. YueJ. MaJ. ShuX. HeY. XiaoW. TianZ. Advances in NK cell production.Cell. Mol. Immunol.202219446048110.1038/s41423‑021‑00808‑334983953
    [Google Scholar]
  30. StreltsovaM.A. BarsovE.V. ErokhinaS.A. SapozhnikovA.M. KovalenkoE.I. Current approaches to engineering of NK cells for cancer immunotherapy.Curr. Pharm. Des.201824242810282410.2174/138161282466618082911301330156154
    [Google Scholar]
  31. VelichinskiiRA StreltsovaMA KustSA SapozhnikovAM KovalenkoEI The biological role and therapeutic potential of NK cells in hematological and solid tumors.Int J Mol Sci.202122211138510.3390/ijms222111385
    [Google Scholar]
  32. MorganM.A. BüningH. SauerM. SchambachA. Use of cell and genome modification technologies to generate improved “Off- the-Shelf” CAR T and CAR NK cells.Front. Immunol.202011196510.3389/fimmu.2020.0196532903482
    [Google Scholar]
  33. DuS. XuW. WangY. LiL. HaoP. TianM. WangM. LiT. WuS. LiuQ. BaiJ. QuX. JinN. ZhouB. LiaoM. LiC. The “LLQY” motif on SARS-CoV-2 spike protein affects S incorporation into virus particles.J. Virol.2022966e01897-2110.1128/jvi.01897‑2135045269
    [Google Scholar]
  34. WahlersA SchwiegerM LiZ Meier-TackmannD LindemannC EckertHG Influence of multiplicity of infection and protein stability on retroviral vector-mediated gene expression in hematopoietic cells.Gene Ther200184778610.1038/sj.gt.3301426
    [Google Scholar]
  35. HuangS. KamihiraM. Development of hybrid viral vectors for gene therapy.Biotechnol. Adv.201331220822310.1016/j.biotechadv.2012.10.00123070017
    [Google Scholar]
  36. SutluT. NyströmS. GilljamM. StellanB. ApplequistS.E. AliciE. Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: Implications for gene therapy.Hum. Gene Ther.201223101090110010.1089/hum.2012.08022779406
    [Google Scholar]
  37. AllanD.S.J. ChakrabortyM. WallerG.C. HochmanM.J. PoolcharoenA. RegerR.N. ChildsR.W. Systematic improvements in lentiviral transduction of primary human natural killer cells undergoing ex vivo expansion.Mol. Ther. Methods Clin. Dev.20212055957110.1016/j.omtm.2021.01.00833665226
    [Google Scholar]
  38. ChockleyP. PatilS.L. GottschalkS. Transient blockade of TBK1/IKKε allows efficient transduction of primary human natural killer cells with vesicular stomatitis virus G-pseudotyped lentiviral vectors.Cytotherapy202123978779210.1016/j.jcyt.2021.04.01034119434
    [Google Scholar]
  39. KobyzevaP.A. StreltsovaM.A. ErokhinaS.A. KanevskiyL.M. TelfordW.G. SapozhnikovA.M. KovalenkoE.I. CD56dimCD57−NKG2C+ NK cells retaining proliferative potential are possible precursors of CD57+NKG2C+ memory-like NK cells.J. Leukoc. Biol.202010841379139510.1002/JLB.1MA0720‑654RR32930385
    [Google Scholar]
  40. LinP. CorreaD. LinY. CaplanA.I. Polybrene inhibits human mesenchymal stem cell proliferation during lentiviral transduction.PLoS One201168e2389110.1371/journal.pone.002389121887340
    [Google Scholar]
  41. DenningW. DasS. GuoS. XuJ. KappesJ.C. HelZ. Optimization of the transductional efficiency of lentiviral vectors: Effect of sera and polycations.Mol. Biotechnol.201353330831410.1007/s12033‑012‑9528‑522407723
    [Google Scholar]
  42. GriukovaA. DeryabinP. SirotkinaM. ShatrovaA. NikolskyN. BorodkinaA. P38 MAPK inhibition prevents polybrene-induced senescence of human mesenchymal stem cells during viral transduction.PLoS One20181312e020960610.1371/journal.pone.020960630586456
    [Google Scholar]
  43. DeryabinP. GriukovaA. ShatrovaA. PetukhovA. NikolskyN. BorodkinaA. Optimization of lentiviral transduction parameters and its application for CRISPR-based secretome modification of human endometrial mesenchymal stem cells.Cell Cycle2019186-774275810.1080/15384101.2019.159365030880567
    [Google Scholar]
  44. CornettaK. AndersonW.F. Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene-transfer: Implications for human gene therapy.J. Virol. Methods198923218719410.1016/0166‑0934(89)90132‑82786000
    [Google Scholar]
  45. LewisP.F. EmermanM. Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus.J. Virol.199468151051610.1128/jvi.68.1.510‑516.19948254763
    [Google Scholar]
  46. ThomasL.M. PetersonM.E. LongE.O. Cutting edge: NK cell licensing modulates adhesion to target cells.J. Immunol.201319183981398510.4049/jimmunol.130115924038086
    [Google Scholar]
  47. HegeK.M. BergslandE.K. FisherG.A. NemunaitisJ.J. WarrenR.S. McArthurJ.G. LinA.A. SchlomJ. JuneC.H. SherwinS.A. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.J. Immunother. Cancer2017512210.1186/s40425‑017‑0222‑928344808
    [Google Scholar]
  48. GuoY. FengK. LiuY. WuZ. DaiH. YangQ. WangY. JiaH. HanW. Phase I study of chimeric antigen receptor–modified T cells in patients with EGFR-positive advanced biliary tract cancers.Clin. Cancer Res.20182461277128610.1158/1078‑0432.CCR‑17‑043229138340
    [Google Scholar]
  49. RustantiL. JinH. LiD. LorM. SivakumaranH. HarrichD. Differential effects of strategies to improve the transduction efficiency of lentiviral vector that conveys an anti-HIV protein, nullbasic, in human T cells.Virol. Sin.201833214215210.1007/s12250‑018‑0004‑729541943
    [Google Scholar]
  50. RemleyV.A. JinJ. SarkarS. MosesL. ProchazkovaM. CaiY. ShaoL. LiuH. FuksenkoT. JinP. StroncekD.F. HighfillS.L. High efficiency closed-system gene transfer using automated spinoculation.J. Transl. Med.202119147410.1186/s12967‑021‑03126‑434819105
    [Google Scholar]
  51. NasiriF. MuhammadnejadS. RahbarizadehF. Effects of polybrene and retronectin as transduction enhancers on the development and phenotypic characteristics of VHH-based CD19-redirected CAR T cells: A comparative investigation.Clin. Exp. Med.20222362535254910.1007/s10238‑022‑00928‑836434173
    [Google Scholar]
  52. Quintás-CardamaA. YehR.K. HollymanD. StefanskiJ. TaylorC. NikhaminY. ImperatoG. SadelainM. RivièreI. BrentjensR.J. Multifactorial optimization of gammaretroviral gene transfer into human T lymphocytes for clinical application.Hum. Gene Ther.200718121253126010.1089/hum.2007.08818052719
    [Google Scholar]
  53. YangY. BadetiS. TsengH. MaM.T. LiuT. JiangJ.G. LiuC. LiuD. Superior expansion and cytotoxicity of human primary NK and CAR-NK cells from various sources via enriched metabolic pathways.Mol. Ther. Methods Clin. Dev.20201842844510.1016/j.omtm.2020.06.01432695845
    [Google Scholar]
  54. KremerV. LigtenbergM.A. ZendehdelR. SeitzC. DuivenvoordenA. WennerbergE. ColónE. Scherman-PlogellA.H. LundqvistA. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.J. Immunother. Cancer2017517310.1186/s40425‑017‑0275‑928923105
    [Google Scholar]
  55. ReindlL.M. AlbingerN. BexteT. MüllerS. HartmannJ. UllrichE. Immunotherapy with NK cells: Recent developments in gene modification open up new avenues.OncoImmunology202091177765110.1080/2162402X.2020.177765133457093
    [Google Scholar]
  56. WilliamsM.D. ChenA.T. StoneM.R. GuoL. BelmontB.J. TurkR. TRAFfic signals: High-throughput CAR discovery in NK cells reveals novel TRAF-binding endodomains that drive enhanced persistence and cytotoxicity.BioRxiv20232023-0810.1101/2023.08.02.551530
    [Google Scholar]
  57. PortilloA.L. HoggR. AshkarA.A. Production of human CAR-NK cells with lentiviral vectors and functional assessment in vitro. STAR Protocols20212410095610.1016/j.xpro.2021.10095634825217
    [Google Scholar]
  58. KimY LeeDY ChoiJU ParkJS LeeSM KangCH Optimized conditions for gene transduction into primary immune cells using viral vectors.Sci Reports20231311210.1038/s41598‑023‑39597‑2
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128314633240724060916
Loading
/content/journals/cpd/10.2174/0113816128314633240724060916
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): genetic modification; immunotherapy; NK cells; RD114; retroviral particles; transduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test